• Title/Summary/Keyword: mixture of silica gels

Search Result 4, Processing Time 0.047 seconds

Basic Study of the Hysteresis of a Nano Shock Absorbing Damper by Employing Mixed Lyophobic Coating Silica Gel (실리카 겔의 소수화 코팅 혼합 정도에 따른 나노 충격 흡수 장치의 이력 현상에 대한 기초적 연구)

  • 문병영;김흥섭
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.59-66
    • /
    • 2003
  • A novel application of nano-technology in the field of engineering, called colloidal damper, is investigated. This device is complementary to the hydraulic damper, having a cylinder-piston construction. Particularly for colloidal damper, the hydraulic oil is replacedby a colloidal suspension, which is consisted from a nano-porous matrix with controlled architecture and a lyophobic fluid. In this experimental work, the porous matrix is composed from silica gel, with labyrinth architecture, coated by organo-silicones substances in order to achieve a hydrophobic surface. Water is considered as associated lyophobic fluid. The colloidal damper test rig and the measuring technique of the hysteresis are described. the influence of the hydrophobicity level upon the colloidal damper hysteresis is investigated, for silica gels with similar pores distribution. A certain desired shape of the hysteresis can be achieved by employing mixture of silica gels with different level of hydrophobicity and/or architecture. With these results, it is believed that the proposed damper can be designed and be applied to the desired structure.

Potential of PVA templated Silica Xerogels as Adsorbents for Rhodamine 6G

  • Pirzada, Tahira;Shah, Syed Sakhawat
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.6
    • /
    • pp.1024-1029
    • /
    • 2011
  • PVA/silica hybrid xerogels were synthesized by sonohydrolysis of a mixture of 2-way catalyzed TEOS and water solution of PVA. PVA was successfully removed from the xerogels through calcination and its removal was confirmed through TGA analysis of the calcined gel. Microstructure of the gels was studied through SEM, XRD and FTIR. Nitrogen sorption studies were conducted to find out surface area of different samples. It was found out that the samples having PVA removed through calcinations have higher surface area (411.64 $m^2$/g) than the samples (353.544 $m^2$/g) synthesized without any PVA. Adsorption properties of these xerogels synthesized by using different ratios of components were studied by taking Rhodamine G6 as a model adsorbate. The experiments were conducted at room temperature ($25^{\circ}C$). UV visible spectroscopy was used to measure the concentration of the dye before and after adsorption. The adsorption data of Rhodamine G6 on PVA modified silica is described by the Freundlich's adsorption model.

Preparation of Microporous Silica Membrane from TEOS-$H_2O$ System and Separation Of $H_2$-$N_2$ Gas Mixture (TEOS-$H_2O$계로부터 다공성 실리카 막의 제조 및 수소-질소 혼합기체의 분리)

  • 강태범;이현경;이용택
    • Membrane Journal
    • /
    • v.10 no.2
    • /
    • pp.55-65
    • /
    • 2000
  • The porous silica membrane was prepared from Si(${OC}_2H_5)_4-H_2O$ system by sol-gel method. To investigate the characteristics of gels and porous silica membrane, we examined gels and porous silica membrane using TG-DTA, X-ray diffractometer, IR spectrophotometer, BET, SEM and TEM. The optimum mole ratio of Si(OC$_2$H$_{5}$)$_4$ : $H_2O$ $C_2$H$_{5}$OH for porous silica membrane was 1 : 4.5 : 4. The porous silica membrane was obtained by heat treatment of the gel above 700 $^{\circ}C$. The specific surface area of sintered gel was 3.8 $m^2$/g to 902.3 $m^2$/g at 100 $^{\circ}C$ to 1100 $^{\circ}C$ The pore size of sintered gel was in the range 20 $\AA$~ 50$\AA$. The particle size of sintered gel was 15 nm to 30 nm at 30$0^{\circ}C$ to 700$^{\circ}C$. The performance of the porous silica membrane was investigated for the separation of $H_2$/$N_2$ gas mixture. Gas separation through porous silica membrane depends upon Knudsen flow and surface flow. The veal separation factor($\alpha$) of $H_2$/$N_2$ was 5.17 at 155.15 cmHg and $25^{\circ}C$. The real separation factor($\alpha$), head separation factor($\beta$), and tail separation factor( $\bar{B}$) increased as the pressure of permeation cell Increased.sed.

  • PDF

Development and Characteristics of Thixotropic Grout based on Colloidal Silica (실리카 콜로이드를 이용한 가소성 그라우트의 개발 및 공학적 특성)

  • Ryu, Dong-Sung;Jeong, Gyeong-Hwan;Shin, Min-Sik;Kim, Dong-Hae;Lee, Jun-Seok;Jung, Du-Hwoe
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1283-1290
    • /
    • 2005
  • A thixotropic grout has been newly developed for the use of back-filling a tail void in the shield tunnel and filling up ground voids. The grout developed in the study is a mixture of colloidal silica, cement and some functional additives. Its engineering characteristics was investigated by measuring a viscosity and unconfined compressive strengths. The optimum mixing proportion for an effective thixotropic grout was proposed through several repeated laboratory tests. The various physical properties such as thixotropy, unconfined compressive strengths, and durability of the thixotropic grout and the gels produced from the grout were compared with those of the well-known waterglass grout such as L.W.. The thixotropic grout developed in the study exhibited an excellent performance for back-filling of tail voids, based on experimental results compared to the existing waterglass grout.

  • PDF