• Title/Summary/Keyword: mixing ratio of aggregate

Search Result 199, Processing Time 0.029 seconds

Evaluation of Rheological Properties and Acceptance Criteria of Solidifying Agents for Radioactive Waste Disposal Using Waste Concrete Powder (폐콘크리트를 재활용한 방사성 폐기물용 고화제의 레올로지 특성 및 인수기준 특성평가)

  • Seo, Eun-A;Kim, Do-Gyeum;Lee, Ho-Jea
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.276-284
    • /
    • 2022
  • In this study, performance evaluation and rheological characteristics were analyzed for recycling the fine powder of nuclear power plant dismantled waste concrete as a solidifying agent for radioactive waste disposal. The radioactive concrete fine powder was used to prepare a simulated sample, and the test specimen was prepared using Di-water, CoCl2, and 1 mol CsCl aqueous solution as mixing water. Regardless of the aggregate mixing ratio and the type of mixing water, it satisfies the performance standard of 3.45 MPa for compressive strength at 28 days of age. All specimens satisfied the criteria for submersion strength, and the thermal cycle compressive strength satisfies the criteria for all specimens except Plain-50. As a result of evaluating the rheological properties of the solidifying agent, it was found that the increase in the aggregate mixing rate decreased the yield stress and plastic viscosity. The leaching index for cobalt and cesium of all specimens was 6 or higher, which satisfies the standard. In order to secure the stable performance of the solidifying agent, it is considered effective to use 40 % or less of the aggregate component in the solidifying agent.

Correlation Analysis between Unit Weight and Thermal Conductivity in Porous Concrete Containing Natural Fine and Bottom Ash Aggregates (바텀애시와 천연 잔골재를 혼입한 다공성 콘크리트의 단위질량과 열전도도의 상관분석)

  • Seung-Tae Jeong;In-Hwan Yang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.542-551
    • /
    • 2023
  • In this paper, the thermal properties of porous concrete containing natural fine aggregates in bottom ash aggregates were analyzed. In this study, natural fine aggregates were used for bottom ash aggregates to understand the material properties of each aggregate and then used as an aggregate for porous concrete. A porous concrete specimen was manufactured by fixing the water-binder ratio at 0.25 and designating the compaction at 0.5, 1.5, and 2.5 MPa. Unit weight, total void ratio and thermal conductivity test were measured and discussed. As the compaction increased and the mixing ratio of natural fine aggregates increased, the unit weight and thermal conductivity increased, and the total void ratio decreased. In addition, the correlations between unit weight, total void ratio and thermal conductivity of porous concrete with previous experimental data were presented and the correlation coefficient (R2) was also analyzed.

Characteristic of the mixing ratio Magnesia Phosphate Composite (MPC) Exterior Material Artificial Stone According to the Waste Porcelain mixing ratio (폐자기 혼합비율 마그네시아 인산염 복합체(MPC) 외장재 인조석재의 특성)

  • Yoo, Yong-Jin;Jo, Byeong-Nam;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.160-161
    • /
    • 2013
  • Recently, the enviroment problem is serious due to the global warming phenomenon because of the greenhouse gas exhaustion. In addition, the effort to reduce the problem in the situation where the severity of the destruction of environment because of the indiscriminate picking of the that is the raw material of the cement, Accordingly, in the interior of a country, the industrial site using the artificial stone instead of the natural stone is increased. Thus the cement reduction amount of use and substitute material research is the urgent actual condition with the gas emission, which here it is generated in conducting compression molding in the building stone manufacturing process performance degradation phenomenon and fire resistance, and problem of the durability. limestone and aggregate and exhaustion of resource are emphasized is continued. In this research, the fly ash and waste porcelain is applied to the magnesia phosphate composite (MPC) and the characteristic of the artificial stone according to it tries to be looked into.

  • PDF

Experimental Study on the Strength of Concrete Specimens Mixed with Tire Chips (폐타이어 입자혼입 콘크리트의 강도별 특성 실험)

  • Son, Ki-Sang
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.84-90
    • /
    • 2005
  • This study is to use results of the experiment on the influence to the strength by mixing powders of wasted tires into regular remicon within a range of little effectiveness in durability, applicability, economic aspect, and workability, to put it to practical use and to apply as basic data from a view of recycling wasted tires as construction materials. And the concrete, which was mixed with 10mm particles with ratio of $0.5\%\;and\;1.0\%$ respectively at 270 of mixing strength, was reduced by $27\%$ in compressive strength compared to normal concrete, whereas concrete mixed with other than 10mm particles showed lower decrease ratio compared to the former by reducing only $1.0\%\~1.5\%$. it is found that as strength increases, the less in quantity of aggregate and the more increase in quantity of cement. When considered to the above result, it is estimated that concrete mixed with wasted tire particles could be better used in conditions of compressive force rather than tensile force, and could also be used for structures with flexural strengths as well. In conclusion, higher strengths could be made using waste tire mix.

Properties of Fresh Mortar Mixed with Steel Furnace Slag Powder (제강슬래그 분말을 혼입한 굳지 않은 모르타르의 특성)

  • Lee, Jeong-Taek;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.33-34
    • /
    • 2023
  • Currently, research on construction materials using industrial by-products is being conducted in the Inhan construction industry due to CO2 emissions during the cement production process and a shortage of aggregates. Among these, research has been conducted to use steel furnace slag as an aggregate by reducing the reactivity of free-CaO, which has the characteristic of expanding through open storage, aging, and rapid cooling. However, research on the use of powder as a cement admixture or substitute is insufficient. Therefore, this study aims to analyze the properties of fresh mortar using steel furnace slag powder. The mixing ratio of steel furnace slag powder was divided into three levels: 0, 20, and 40 (%), and the test items were flow and unit weight. The experimental results showed that as the mixing ratio of steel furnace slag powder increased, flow and unit weight tended to increase. Therefore, it is expected to have a positive effect on improving workability or strength as a cement admixture.

  • PDF

A Study on the Character of Concrete compressive strength according to Bottom-Ash and Internal gap for Crack aspect predictions (Bottom-Ash를 활용한 콘크리트 압축강도와 내부 공극 특성 분석 및 균열양상 예측)

  • Jung, Woo-Young;Sim, Young-Hwan;Lee, Sang-Moon;Choi, Hyun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.713-716
    • /
    • 2008
  • In about the concrete application which recycles Ash the research came to be advanced as research in compliance with researchers relation actively in about cement substitutional concrete mixing ratio and burglar quality of existing. The research which it sees as fundamental research the research which it follows in cement substitutional concrete mixing ratio of existing and it researched different Bottom-Ash recycling qualities in about cup aggregate partial substitution Bottom-Ash application.

  • PDF

A Study of the Characteristics of the High-Flowable Concrete (고유동콘크리트의 특성에 관한 실험적 연구)

  • Jeon, Hyun-Kyu;Kim, Dae-Hoi;Lee, Jong-Chan;Ji, Suk-Won;Yoo, Taek-Dong;Seo, Chee-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.2
    • /
    • pp.129-134
    • /
    • 2003
  • In this research, we used fly-ash and blast-furnace slag as substitute material of cement and fine aggregate, and we, through experiments, researched and analyzed the features of high-flowable concrete added high efficiency AE water reduction agent. The results are below. 1. Liquefaction generally presented high-slump flow value; on the other hand, partial segregation was observed in case of mixing proportion with 65 cm slump flow and above. This segregation was partially improved in accordance with mixing admixture. 2. Compressive strength according to mixing admixture and increasing mixing ratio of fly-ash were subject to be declined when it was initially cast-in, but its gap was improved when time was fully passed. 3. After mixing blast-furnace slag and fly-ash as substitute material, the result showed that the modulus of elasticity against freezing & melting was improved according to mixing blast-furnace slag and also increased in accordance with increasing pulverulent-body volume. 4. According to increasing the mixing volume of fly-ash, the durability factor was deteriorated because compressive strength became lower as well as air content was decreased when it was initially case-in. 5. The minimum air content to secure durability was 3.7%, for that reason, we had better secure admixture such as air entraining agent when cast-in high-flowable concrete.

A Study on the Development Lightweight Aggregate using Recycled-Paint for Reduction in Freezing Ground (단열골재 개발을 통한 동토방지 기술개발에 관한 연구)

  • Moon, Jong-Wook;Back, Min-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.47-54
    • /
    • 2010
  • This study is progressed function ratio, it's trued taste by an experiment to present data for human work light weight aggregate development that use clink ash progressed liquid limit, small success limit, wear loss in quantity, sand equivalent, sieve cutting examination. 80:20's match of function rain examination is 1.4, and that use rubble aggregate as recyeled-panit lightweight aggregate's capacity ratio increases by 1.0 increase of function rain many. Also, examination multiplied delicate flavor gradually according to increase of the mixing rate, and absorption coefficient increased. This is judged by phenomenon that appear by special quality upper recycled-panit of polystyrene bid and porosity's increase between lightweight aggregate. It is case that use aggregate of wear loss in quantity is 13.5 in sand equivalent and a wear loss in quantity experiment and although case that mix 20% increases by 14.4, this phenomenon by weak tissue of lightweight aggergate be judged. When it's as a these experiment, the statue prevention floor of a street improvement specifications is prescribing so that satisfy by sand equivalent 20, CBR 10. This is showed result that this satisfies in quality standard all in match experiment ago that see.

Proper Mixing Ratio for Securing Quality of Free-form Panel (비정형 패널의 형상 품질확보를 위한 적정 배합비 도출)

  • Kim, Min-Sik;Park, Chae-Wool;Kim, Ki-Hyuk;Do, Sung-Lok;Lee, Dong-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.5
    • /
    • pp.449-456
    • /
    • 2019
  • Recent developments in architectural technologies and programs have enabled architects to think creatively and design free-form architecture. however, there are many problems in the production technology of FCP(Free-Form Concrete Panel). In particular, reduced accuracy due to lack of free-form panel production technology can lead to redesign of buildings as a result, problems such as an increase in construction cost and period. Therefore, this experiment aimed to compensate the decrease of the accuracy according to the displacement difference and to derive the proper mixing ratio for maintaining the shape during the free-form panel curing. In this study, molds were made using paraffin that is a recyclable phase change material. Concrete Panel is usually produced from Portland cement, dead burn magnesia, phosphate, borax and fine aggregate. In this study, four mixing ratios of FCP were selected after each material was blended to determine the proper blending ratio of the fluidity phase, the water absorption rate and the water content of the test piece. FCP was fabricated on the basis of the selected four compounding ratios and thickness and error rate were measured. Based on the error rate of the measured FCP, the quality standard was satisfied among the four compounding ratios.

Utilizability of Waste Concrete Powder as a Material for Soil Pavement (흙도로포장용 재료로서 폐콘크리트 미분말의 활용성 연구)

  • Kim, Yong-Jic;Choi, Yun-Wang;Kim, Young-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.277-282
    • /
    • 2015
  • This study is conducted to utilize waste concrete powder (WCP) made as a by-product manufacturing high quality recycled aggregate. The blaine fineness of the used waste concrete powder was $928cm^2/g$. As the main characteristic of waste concrete powder, it showed an angular type similar to cement, but hydrated products were attached on the surface of particles. In addition, the size of the particles of waste concrete powder was larger than OPC and in terms of chemical components it had higher $SiO_2$ contents. For using WCP in soil cement-based pavement, the qualities, physical and chemical properties, of WCP should be researched. In the first step, the specified compressive strength of mortar for two types of clay sand soil and clay soil respectively was experimented to be 15 MPa and then optimum mixing ratio of chemical solidification agent were decided in the range of 1.5 - 3.0% in the replacement with cement weight content. In the second step, based on the prior experimental results, recycling possibility of WCP in soil cement-based pavement was studied. In the result of experiment the mixing ratio of WCP were 5, 10, 15 and 20% in the replacement with soil weight and the compressive strength of mortar was somewhat decreased according to the increase of the mixing ratio of WCP.