• Title/Summary/Keyword: mixing properties

Search Result 2,428, Processing Time 0.048 seconds

Effect of Organic Substrates Mixture Ratio on 2-year-old Highbush Blueberry Growth and Soil Chemical Properties (유기자재 종류별 혼합비율이 2년생 하이부시 블루베리의 유목 생육과 토양환경에 미치는 영향)

  • Kim, Hong-Lim;Kim, Hyoung-Deug;Kim, Jin-Gook;Kwack, Yong-Bum;Choi, Young-Hah
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.858-863
    • /
    • 2010
  • The blueberry farming requires the soil condition of well-drainage, pH of 4.5 to 5.2, and high in organic matters for stable growth and development. Most of soil type of cultivated land in Korea, however, belongs to alkaline soils with low organic matter content and poor drainage. Therefore, the blueberry farmers use peat moss heavily to improve the soil condition, but the guideline on the effective and economic ratio of peat moss is not established yet. This study was performed to determine the cost effective peat moss ratio for amending soils, and to investigate the feasibility of using sawdust and coco peat as soil amendments. Peat moss, coco peat and sawdust are mixed with soil at the ratio of 0, 12.5, 50 and 100% (v/v). Among 3 organic materials with various mixture ratios, the pH of soil was the lowest in 100% peat moss and sawdust mixtures (pH 3.67 and pH 3.73, respectively), followed by pH 5.30 at 50% peat moss. The soil organic matter content are directly proportional to the mixture ratios in all three organic materials and the same trend was observed in the variation of content of exchangeable potassium in the coco peat treatments. On the contrary, the content of available phosphate, exchangeable calcium and magnesium decreased with increasing the ratio of organic materials. The nitrogen content in the leaves decreased as increasing the ratio of peat moss and coco peat in soil, but not of sawdust. The content of phosphate decreased but potassium increased as the ratio of sawdust and coco peat increased. There was no clear difference in the contents of magnesium and calcium among 3 organic materials. The plant height, stem diameter and dry weight of blueberry plants were the highest in 50 % peat moss, followed by 12.5% peat moss and 12.5% coco peat. The plants in 100% peat moss showed very poor growth. It can be concluded that peatmoss, when applied and managed appropriately, will be a good material for improving soil condition as well as securing desirable growth for blueberry. Upon coupling economic aspect, the optimum mixing ratio of peatmoss for blueberry farming is approximately 25-50%.

A New White Wheat Variety, "Hanbaek" with Good Noodle Quality, High Yield and Resistant to Winter Hardiness (내한 다수성 백립계 제면용 밀 신품종 "한백밀")

  • Park, Chlul-Soo;Heo, Hwa-Young;Kang, Moon-Suk;Kim, Hong-Sik;Park, Hyung-Ho;Park, Jong-Chul;Kang, Chon-Sik;Kim, Hag-Sin;Cheong, Young-Keun;Park, Ki-Hun
    • Korean Journal of Breeding Science
    • /
    • v.41 no.2
    • /
    • pp.130-136
    • /
    • 2009
  • "Hanbaek", a white winter wheat (Triticum aestivum L.) cultivar was developed by the National Institute of Crop Science, RDA. It was derived from the cross "Shan7859/Keumkang"//"Guamuehill" during 1996. "Hanbaek" was evaluated as "Iksan314" in Advanced Yield Trial Test in 2005. It was tested in the regional yield trial between 2006 and 2008. "Hanbaek" is an awned, semi-dwarf and hard winter wheat, similar to "Keumkang" (check cultivar). The heading and maturing date of "Hanbaek" were similar to that of "Keumkang". Culm and spike length of "Hanbaek" were 89 cm and 9.0 cm, which longer culm length and spike length than "Keumkang" (80 cm and 7.9 cm, respectively). "Hanbaek" had lower test weight (797 g) and higher 1,000-grain weight (47.7 g) than "Keumkang" (813 g and 44.9 g, respectively). "Hanbaek" showed resistance to winter hardiness and susceptible to pre-harvest sprouting, which lower withering rate on the high ridge (4.4%) and higher rate of pre-harvest sprouting (47.9%) than "Keumkang" (21.9% and 30.4%, respectively). "Hanbaek" had similar flour yield (74.4%) to "Keumkang" (74.1%) and higher ash content (0.45%) than "Keumkang" (0.42%). "Hanbaek" showed lower lightness (89.13) and similar redness and yellowness (-0.87 and 10.93) in flour color than "Keumkang" (90.02, -1.23 and 9.28, respectively). It showed similar protein content (12.8%) SDS-sedimentation volume (63.0 ml) and gluten content (10.8%) to those of "Keumkang" (11.9%, 62.3 ml and 10.2%, respectively). It showed lower water absorption (59.6%) and mixing time (3.8 min) in mixograph and higher fermentation volume (1,350 ml) than those of "Keumkang" (60.6%, 4.7 min and 1,290 ml, respectively). Amylose content and pasting properties of "Hanbaek " were similar to those of "Keumkang". "Hanbaek" showed same compositions in high molecular weight glutenin subunits (HMW-GS, 2*, 13+16, 2+12), granule bound starch synthase (Wx-A1a, Wx-B1a, and Wx-D1a) and puroindolines (Pina-D1a/Pinb-D1b) compared to "Keumkang". "Hanbaek" showed lower hardness (4.22N) and similar springiness and cohesiveness of cooked noodles (0.94 and 0.63) to those of "Keumkang" (4.65N, 0.93 and 0.64, respectively). Average yield of "Hanbaek" in the regional adaptation yield trial was 5.98 MT/ha in upland and 5.05 MT/ha in paddy field, which was 8% and 6% higher than those of "Keumkang" (5.55 MT/ha and 4.77 MT/ha, respectively). "Hanbaek" would be suitable for the area above the daily minimum temperature of $-10^{\circ}C$ in January in Korean peninsula.

A New White Wheat Variety, "Baegjoong" with High Yield, Good Noodle Quality and Moderate to Pre-harvest Sprouting (백립계 다수성 수발아 중도저항성 제면용 밀 신품종 "백중밀")

  • Park, Chul Soo;Heo, Hwa-Young;Kang, Moon-Suk;Lee, Chun-Kee;Park, Kwang-Geun;Park, Jong-Chul;Kim, Hong-Sik;Kim, Hag-Sin;Hwang, Jong-Jin;Cheong, Young-Keun;Kim, Jung-Gon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.2
    • /
    • pp.153-158
    • /
    • 2008
  • "Baegjoong", a white winter wheat (Triticum aestivum L.) cultivar was developed by the National Institute of Crop Science, RDA. It was derived from the cross "Keumkang"/"Olgeuru" during 1996. "Baegjoong" was evaluated as "Iksan307" in Advanced Yield Trial Test in 2004. It was tested in the regional yield trial test between 2005 and 2007. "Baegjoong" is an awned, semi-dwarf and soft white winter wheat, similar to "Keumkang" (check cultivar). The heading and maturing date of "Baegjoong" were similar to "Keumkang". Culm and spike length of "Baegjoong" were 77 cm and 7.5 cm, similar to "Keumkang". "Baegjoong" had lower test weight (802 g) and lower 1,000-grain weight (39.8 g) than "Keumkang" (811 g and 44.0 g, respectively). It had resistance to winter hardiness, wet-soil tolerance and lodging tolerance. "Baegjoong" showed moderate to pre-harvest sprouting (23.9%) although "Keumkang" is susceptible to pre-harvest sprouting (38.9%). "Baegjoong" had similar flour yield (72.4%) and ash content (0.41%) to "Keumkang" (72.0% and 0.41%, respectively) and similar flour color to "Keumkang". It showed lower protein content (8.8%) and SDS-sedimentation volume (35.3 ml) and shorter mixograph mixing time (3.8 min) than "Keumkang" (11.0%, 59.7 ml and 4.5 min, respectively). Amylose content and pasting properties of "Baegjoong" were similar to "Keumkang". "Baegjoong" had softer and more elastic texture of cooked noodles than "Keumkang". Average yield of "Baegjoong" in the regional adaptation yield trial was $5.88\;MT\;ha^{-1}$ in upland and 5.35 MT ha-1 in paddy field, which was 13% and 17% higher than those of "Keumkang" ($5.21\;MT\;ha^{-1}$ and $4.58\;MT\;ha^{-1}$, respectively). "Baegjoong" would be suitable for the area above the daily minimum temperature of $-10^{\circ}C$ in January in Korean peninsula.

Study on the Lubricity Characteristics of Bio-heavy Oil for Power Generation by Various feedstocks (다양한 원료에 따른 발전용 바이오중유의 윤활 특성 연구)

  • Kim, Jae-Kon;Jang, Eun-Jung;Jeon, Cheol-Hwan;Hwang, In-Ha;Na, Byung-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.985-994
    • /
    • 2018
  • Bio-heavy oil for power generation is a product made by mixing animal fat, vegetable oil and fatty acid methyl ester or its residues and is being used as steam heavy fuel(B-C) for power generation in Korea. However, if the fuel supply system of the fuel pump, the flow pump, the injector, etc., which is transferred to the boiler of the generator due to the composition of the raw material of the bio-heavy oi, causes abrasive wear, it can cause serious damage. Therefore, this study evaluates the fuel characteristics and lubricity properties of various raw materials of bio-heavy oil for power generation, and suggests fuel composition of biofuel for power generation to reduce frictional wear of generator. The average value of lubricity (HFRR abrasion) for bio-heavy oil feedstocks for power generation is $137{\mu}m$, and it varies from $60{\mu}m$ to $214{\mu}m$ depending on the raw materials. The order of lubricity is Oleo pitch> BD pitch> CNSL> Animal fat> RBDPO> PAO> Dark oil> Food waste oil. The average lubricity for the five bio-heavy oil samples is $151{\mu}m$ and the distribution is $101{\mu}m$ to $185{\mu}m$. The order of lubricity is Fuel 1> Fuel 3> Fuel 4> Fuel 2> Fuel 5. Bio-heavy oil samples (average $151{\mu}m$) show lower lubricity than heavy oil C ($128{\mu}m$). It is believed that bio-heavy oil for power generation is composed of fatty acid material, which is lower in paraffin and aromatics content than heavy oil(B-C) and has a low viscosity and high acid value, resulting in inhibition of the formation of lubricating film by acidic component. Therefore, in order to reduce friction and abrasion, it is expected to increase the lubrication of fuel when it contains more than 60% Oleo pitch and BD pitch as raw materials of bio-heavy oil for power generation.

Evaluation and Physicochemical Property for Building Materials from the Japanese Ministry of General Affairs in Joseon Dynasty (일제강점기 조선통감부 건축재료의 물리화학적 특성과 평가)

  • Park, Seok Tae;Lee, Jeongeun;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.317-338
    • /
    • 2022
  • Physicochemical characteristics and evaluation were studied by subdividing the concretes, bricks and earth pipes on the site of the Japanese Ministry of General Affairs in Joseon Dynasty, known as modern architecture, into three periods. Concretes showed similar specific gravity and absorption ratio, and large amounts of aggregates, quartz, feldspar, calcite and portlandite were detected. Porosity of the 1907 bricks were higher than those of 1910 and 1950 bricks. All earthen pipe is similar, but the earlier one was found to be more dense. Bricks and earthen pipes are dark red to brown in color within many cracks and pores, but the matrix of the earthen pipe is relatively homogeneous. Quartz, feldspar and hematite are detected in bricks, and mullite is confirmed with quartz and feldspar in earthen pipes, so it is interpreted that the materials have a firing temperature about 1,000 to 1,100℃. Concretes showed similar CaO content, but brick and earthen pipe had low SiO2 and high Al2O3 in the 1907 specimen. However, the materials have high genetic homogeneity based on similar geochemical behaviors. Ultrasonic velocity and rebound hardness of the concrete foundation differed due to the residual state, but indicated relatively weak physical properties. Converting the unconfined compressive strength, the 1st extended area had the highest mean values of 45.30 and 46.33 kgf/cm2, and the 2nd extended area showed the lowest mean values (20.05 and 24.76 kgf/cm2). In particular, the low CaO content and absorption ratio, the higher ultrasonic velocity and rebound hardness. It seems that the concrete used in the constructions of the Japanese Ministry of General Affairs in Joseon Dynasty had similar mixing characteristics and relatively constant specifications for each year. It is interpreted that the bricks and earthen pipes were through a similar manufacturing process using almost the same raw materials.

Origin and Source Appointment of Sedimentary Organic Matter in Marine Fish Cage Farms Using Carbon and Nitrogen Stable Isotopes (탄소 및 질소 안정동위원소를 활용한 어류 가두리 양식장 내 퇴적 유기물의 기원 및 기여도 평가)

  • Young-Shin Go;Dae-In Lee;Chung Sook Kim;Bo-Ram Sim;Hyung Chul Kim;Won-Chan Lee;Dong-Hun Lee
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.2
    • /
    • pp.99-110
    • /
    • 2022
  • We investigated physicochemical properties and isotopic compositions of organic matter (δ13CTOC and δ 15NTN) in the old fish farming (OFF) site after the cessation of aquaculture farming. Based on this approach, our objective is to determine the organic matter origin and their relative contributions preserved at sediments of fish farming. Temporal and spatial distribution of particulate and sinking organic matter(OFF sites: 2.0 to 3.3 mg L-1 for particulate matter concentration, 18.8 to 246.6 g m-2 day-1 for sinking organic matter rate, control sites: 2.0 to 3.5 mg L-1 for particulate matter concentration, 25.5 to 129.4 g m-2 day-1 for sinking organic matter rate) between both sites showed significant difference along seasonal precipitations. In contrast to variations of δ13CTOC and δ15NTN values at water columns, these isotopic compositions (OFF sites: -21.5‰ to -20.4‰ for δ13 CTOC, 6.0‰ to 7.6‰ for δ15NTN, control sites: -21.6‰ to -21.0‰ for δ13CTOC, 6.6‰ to 8.0‰ for δ15NTN) investigated at sediments have distinctive isotopic patterns(p<0.05) for seawater-derived nitrogen sources, indicating the increased input of aquaculture-derived sources (e.g., fish fecal). With respect to past fish farming activities, representative sources(e.g., fish fecal and algae) between both sites showed significant difference (p<0.05), confirming predominant contribution (55.9±4.6%) of fish fecal within OFF sites. Thus, our results may determine specific controlling factor for sustainable use of fish farming sites by estimating the discriminative contributions of organic matter between both sites.

Evaluation of Setting Time, Solubility, and Compressive Strength of Four Calcium Silicate-Based Cements (네 가지 규산 칼슘계 시멘트의 경화시간, 용해도, 압축강도 평가)

  • Yuji Jang;Yujin Kim;Junghwan Lee;Jongsoo Kim;Joonhaeng Lee;Mi Ran Han;Jongbin Kim;Jisun Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.50 no.2
    • /
    • pp.217-228
    • /
    • 2023
  • This study aimed to compare the physical properties of 4 kinds of calcium silicate-based cements (CSCs): 2 kinds of powder-liquid mix type (RetroMTA® [RTMX] and Endocem® MTA Zr [EZMX]) and 2 kinds of premixed type (Well-RootTMPT [WRPR] and Endocem® MTA premixed [ECPR]) CSCs, respectively. Further, we assessed the setting times, solubility values, and compressive strengths of the cements. The shortest setting time was observed for EZMX (123.33 ± 5.77 seconds), followed by RTMX (146.67 ± 5.77 seconds), ECPR (260.00 ± 17.32 seconds), and WRPR (460.00 ± 17.32 seconds), respectively. The highest solubility was observed for WRPR (9.01 ± 0.55%), followed by RTMX (2.17 ± 0.07%), EZMX (0.55 ± 0.03%), and ECPR (0.17 ± 0.03%). Furthermore, the highest compressive strength was observed for ECPR (76.67 ± 25.67 Mpa), followed by WRPR (38.39 ± 7.25 Mpa), RTMX (35.07 ± 5.34 Mpa), and EZMX (4.07 ± 0.60 Mpa). In conclusion, the premixed type CSCs (WRPR and ECPR) exhibited longer setting times compared to the powder-liquid mix type CSCs (EZMX and RTMX). The solubility test showed that ECPR had the lowest solubility while WRPR had the highest solubility, with a statistically significant difference between them (p < 0.0083). Additionally, the compressive strength test showed that ECPR had the highest compressive strength, while EZMX had the lowest compressive strength, also with a statistically significant difference between them (p < 0.0083). ECPR is a promising material as it is premixed, eliminating the need for mixing time, and it has also demonstrated improved solubility and compressive strength, making it a potentially favorable option for clinical use.

A Study on change in thermal properties and chemical structure of Zr-Ni delay system by aging (노화에 따른 Zr-Ni계 지연관의 열 특성 및 화학적 구조 변화에 관한 연구)

  • Park, Byung Chan;Chang, Il Ho;Kim, Sun Tae;Hwang, Taek Sung;Lee, Seungho
    • Analytical Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.285-292
    • /
    • 2009
  • It has been observed that, after long term storage, some ammunitions are misfired by tamping (combustionstopping) due to aging of the chemicals loaded in the ammunitions. Used in ammunitions are percussion powder which provides the initial energy, igniter which ignites the percussion powder, and a delay system that delays the combustion for a period of time. The percussion powder is loaded first, followed by the igniter and then the delay system, and the ammunitions explode by the energy being transferred in the same order. Tamping occurs by combustion-stopping of the igniter or insufficient energy transfer from the igniter to the delay system or the combustion-stopping of the delay system, which are suspected to be caused by low purity of the components, inappropriate mixing ratio, size distribution of particulate components, type of the binder, blending method, hydrolysis by the humidity penetrated during the long term storage, and chemical changes of the components by high temperature. Goal of this study is to find the causes of the combustion-stopping of the igniter and the delay system of the ammunitions after long term storage. In this study, a method was developed for testing of the combustion-stopping, and the size distributions of the particulate components were analyzed with field-flow fractionation (FFF), and then the mechanism of chemical change during long term storage was investigated by thermal analysis (differential scanning calorimetry), XRD (X-ray diffractometry), and XPS (X-ray photoelectron spectroscopy). For the ignition system, M (metal)-O (oxygen) and M-OH peaks were observed at the oxygen's 1s position in the XPS spectrum. It was also found by XRD that $Fe_3O_4$ was produced. Thus it can be concluded that the combustion-stopping is caused by reduction in energy due to oxidation of the igniter.