• 제목/요약/키워드: mixing procedure

검색결과 128건 처리시간 0.027초

고강도콘크리트의 내구성진단을 위한 영향인자 파악을 위한 연구 (A Study on the Effect of Experimental Factors for the Durability Inspection of High Strength Concrete)

  • 권영진;김무한
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제1권2호
    • /
    • pp.123-130
    • /
    • 1997
  • The effect of experimental factors on the Freeze-Thaw durability in the High Strength Concrete has been analyzed and investigated with [DESIGN of EXPERIMENT: L16). The Experimental parameters included the type of aggregate and mixer, the conditions of aggregates, and the difference of mixing temperature, procedure and placing, etc. It is aim of this study to provide the fundamental data on the effect of various factors on the frost resistance of high strength concrete for the practical use and research data accumulation of durability inspection. The results of this experiment indicate that the freeze-thaw durability of high strength concrete is markedly affected by the coarse aggregate source, mixing temperature and curing conditions.

  • PDF

The Design and Study of Virtual Sound Field in Music Production

  • Wang, Yan
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권7호
    • /
    • pp.83-91
    • /
    • 2017
  • In this paper, we propose a thorough solution for adjusting virtual sound field with different kinds of devices and software in preliminary procedure and late stage of music processing. The basic process of music production includes composing, arranging and recording at pre-production stage as well as sound mixing and mastering at post-production stage. At the initial stage of music creation, it should be checked whether the design of virtual sound field, the choice of the tone and the instrument used in the arrangement match the virtual sound field required for the final work. In later recording, mixing and mastering, elaborate adjustments should be done to the virtual sound field. This study also analyzed how to apply the parameter of the effectors to the design and adjustment of the virtual sound field, making it the source of our creation.

분말사출 성형공정에서의 수치해석기술의 응용 (Applications of Numerical Analysis Technology in Powder Injection Molding Process)

  • 강태곤;권태헌;박성진;정성택
    • 한국분말재료학회지
    • /
    • 제9권4호
    • /
    • pp.261-266
    • /
    • 2002
  • CAE technology is an integrated tool including all aspects such as powder, binder system, mixing, injection molding, debinding and sintering. Therefore, CAE technology is considered as one of core technologies for PIM industry in the future. Recently many researchers are developing not only CAE software itself but also application procedures of CAE software. In this study, the applications for CAE technology in PIM industry are presented including feedstock mixing effect, several cases of troubleshooting and optimization procedure.

DCM 설계에서 주요 인자의 결정과 내.외적 안정해석 (The Analysis of Internal & External Stabilities and Factors for D.C.M Design)

  • 이충호;정승용;한상재
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.793-808
    • /
    • 2009
  • This paper presents procedure and prediction method of internal and external stabilities when designing D.C.M, with main factors to be considered, such as chemical reaction of additive, physical properties of stabilized body and mixing strength. Results show that through case studies, a design unconfined compressive strength of stabilized body (hereafter referred to as 'compressive strength') directly depends on the quantity of cement, which is decided by laboratory test, and the compressive strength enormously affects internal and external stabilities. So laboratory mixing test to obtain the compressive strength for design allowable stress should be given careful considerations.

  • PDF

Adaptive Regression by Mixing for Fixed Design

  • Oh, Jong-Chul;Lu, Yun;Yang, Yuhong
    • Communications for Statistical Applications and Methods
    • /
    • 제12권3호
    • /
    • pp.713-727
    • /
    • 2005
  • Among different regression approaches, nonparametric procedures perform well under different conditions. In practice it is very hard to identify which is the best procedure for the data at hand, thus model combination is of practical importance. In this paper, we focus on one dimensional regression with fixed design. Polynomial regression, local regression, and smoothing spline are considered. The data are split into two parts, one part is used for estimation and the other part is used for prediction. Prediction performances are used to assign weights to different regression procedures. Simulation results show that the combined estimator performs better or similarly compared with the estimator chosen by cross validation. The combined estimator generates a similar risk to the best candidate procedure for the data.

Prediction of compressive strength of slag concrete using a blended cement hydration model

  • Wang, Xiao-Yong;Lee, Han-Seung
    • Computers and Concrete
    • /
    • 제14권3호
    • /
    • pp.247-262
    • /
    • 2014
  • Partial replacement of Portland cement by slag can reduce the energy consumption and $CO_2$ emission therefore is beneficial to circular economy and sustainable development. Compressive strength is the most important engineering property of concrete. This paper presents a numerical procedure to predict the development of compressive strength of slag blended concrete. This numerical procedure starts with a kinetic hydration model for cement-slag blends by considering the production of calcium hydroxide in cement hydration and its consumption in slag reactions. Reaction degrees of cement slag are obtained as accompanied results from the hydration model. Gel-space ratio of hardening slag blended concrete is determined using reaction degrees of cement and slag, mixing proportions of concrete, and volume stoichiometries of cement hydration and slag reaction. Furthermore, the development of compressive strength is evaluated through Powers' gel-space ratio theory considering the contributions of cement hydration and slag reaction. The proposed model is verified through experimental data on concrete with different water-to-binder ratios and slag substitution ratios.

경화중 콘크리트의 염해 침투성능에 관한 연구 (Prediction of chloride penetration into hardening concrete)

  • 번위결;왕소용
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 춘계 학술논문 발표대회
    • /
    • pp.50-51
    • /
    • 2015
  • In marine and coastal environments, penetration of chloride ions is one of the main mechanisms causing concrete reinforcement corrosion. Currently, most of experimental investigations about submerged penetration of chloride ions are started after the four weeks standard curing of concrete. The further hydration of cement and reduction of chloride diffusivity during submerged penetration period are ignored. To overcome this weak point, this paper presents a numerical procedure to analyze simultaneously cement hydration reaction and chloride ion penetration process. First, using a cement hydration model, degree of hydration and phase volume fractions of hardening concrete are determined. Second, the dependences of chloride diffusivity and chloride binding capacity on age of concrete are clarified. Third, chloride profiles in hardening concrete are calculated. The proposed numerical procedure is verified by using chloride penetration test results of concrete with different mixing proportions.

  • PDF

In vitro 환경에서 엘라스틴을 혼합한 콜라겐 진피 지지체의 내구성 (The Durability of Elastin-Incorporated Collagen Matrix for Dermal Substitute in Vitro Condition)

  • 유대현;홍종원;탁관철
    • Archives of Plastic Surgery
    • /
    • 제35권1호
    • /
    • pp.7-12
    • /
    • 2008
  • Purpose: Since the report of artificial dermis manufacturing method using collagen by Yannas in 1980, collagen has been effectively used as dermal substitute with its merits such as, lower antigeneicity, controllable biodegradation rate, and minimal inflammatory cytotoxic properties in the dermal tissue engineering field. However, weak mechanical durability was the main drawback of collagen dermal substitute. To improve its stability, mechanical or chemical cross-linking was used. Despite of such process, its clinical use was restricted due to weak durability. To improve the durability of collagen matrix, we designed elastin-incorporated collagen matrix and compared its durability with conventional collagen matrix. Methods: 15mm diameter with 4mm thick collagen dermal matrix was made according to Yannas protocol by mixing 0.5% bovine collagen and chondroitin-6-sulfate followed by degassing, freeze drying, dehydrodermal cross-linking and chemical cross-linking procedure. In elastin incorporated collagen matrix, same procedure was performed by mixing elastin to previous collagen matrix in 4:1 ratio(collagen 80% elastin 20%). In comparison of the two dermal matrix in vitro tests, matrix contracture rate, strain, tensile strength, was measured and stiffness was calculated from comparative analysis. Results: In terms of matrix contracture, the elastin-incorperated added collagen dermis matrix showed 1.2 times more contraction compared to conventional collagen matrix. However, tensile strength showed 1.6 times and stiffness showed 1.6 times increase in elastin-incorporated matrix. Conclusion: Elastin incorperated collagen matrix manufactured by our team showed increased durability due to improvement in tensile strength and stiffness compared to previous collagen matrix($Integra^{(R)}$).

믹싱기 추가에 따른 현장가열 재생 아스팔트 혼합물의 물성평가 (Evaluation of the Properties of a Hot In-Placement Recycled Asphalt Mixture as an Adding Mixer)

  • 이강훈;박재영;이화선;김용주;이재준
    • 한국도로학회논문집
    • /
    • 제20권1호
    • /
    • pp.97-105
    • /
    • 2018
  • PURPOSES : Asphalt concrete pavement is damaged by various causes such as traffic and environmental loads. The distressed pavement should be maintained by various methods to provide a comfortable and safe pavement for the driver. This study evaluates the effect of adding a mixing procedure to enhance the mixture quality in the hot in-placement recycled asphalt pavement method, which is an asphalt-pavement maintenance method. METHODS : Various test methods such as Marshall stability and dynamic stability, were employed to estimate the recycled asphalt mixture with and without an additional mixing, using the hot in-placement recycled asphalt pavement method. RESULTS : The mixture samples used in this study were taken before and after the addition of the mixer in the hot in-placement recycled asphalt pavement method (HIR) at field construction sites in GongJu and JinJu in South Korea. The test results of both mixtures satisfied the asphalt-mixture standard specifications. CONCLUSIONS : This study confirmed that adding a mixer in the HIR method results in a well-mixed new asphalt mixture, rejuvenator, and reclaimed asphalt mixture.

A Study on Leaching Characteristics of Paraffin Waste Form Including Boric Acid

  • Kim, Ju-Youl;Chung, Chang-Hyun;Park, Heui-Joo;Kim, Chang-Lak
    • Nuclear Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.10-16
    • /
    • 2000
  • Preliminary experiment was peformed to investigate the leaching characteristics of paraffin waste forms that had been recently generated in large quantities at domestic nuclear power plants. At first, waste simulants whose compositions were different in mixing ratio of paraffin to boric acid were prepared. Their compressive strengths were measured and ninety-day leaching test of specimen including cobalt was carried out according to ANSI/ANS-16.1 test procedure. Water immersion test was also conducted keeping pace with leaching test and the weight change and the compressive strength of specimen were observed after ninety days. The compressive strength of waste form exhibited 666 psi (4.53 MPa) in the case where mixing ratio of boric acid to paraffin was 78/22, which was adopted in concentrate waste drying system of domestic nuclear power plants. The leaching test resulted in about 50% of the cumulative fraction leached for boric acid and cobalt, respectively. The specific gravity of waste form was 0.87 [g/g]whose value was less than that of water because the weight loss of about 39% occurred after the water immersion test of ninety days. It was also observed that the waste form which had undergone ninety-day water immersion test exhibited the compressive strength of 203 psi (1.38 MPa).

  • PDF