• Title/Summary/Keyword: mixing effects

Search Result 1,436, Processing Time 0.099 seconds

Effects of Animal Waste Addition on Food Waste Compost under Co-composting

  • Lee, Chang Hoon;Kim, Seok-Cheol;Park, Seong-Jin;Kim, Myeong-Sook;Oh, Taek-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.623-633
    • /
    • 2017
  • Food waste has been recognized as a organic sources for composting and many research was conducted to efficiently utilize or treat. This study was to evaluate a feasibility for producing food waste compost under co-composting with mixture of food and animal waste. The mixing ratio of food and animal waste was 35% as main material, which additionally mixed 30% of sawdust for co-composting. Total days of composting experiment were 84 days and each sub samples were collected at every 7 days from starting of composting. Results showed that inner temperature in composting was rapidly increased to $70{\pm}4^{\circ}C$ within 3~5 days depending on mixing animal waste of cattle, pig, and chicken base compared to sole food waste base. Expecially, the CN ratio in the mixture of food and pig water was the highest (16.2) among compost. After finishing composting experiment, maturity was evaluated with solvita and germination test. Maturity index (MI) of the mixture of food and animal waste was ranged between 6~7, but was 3 in sole food waste. Calculated germination index (GI) was at the range of about 100 irrespectively of mixing of food and animal waste. However, NaCl content and heavy metal as Cr, Cu, Ni, Pb, and Zn contents was increased in the mixture of food and animal waste. which was the highest in compost mixed the food and pig waste. Both MI and GI showed that manufactured fertilizer was suitable for fertilizer criteria while sole food waste was not adequate for composting due to composting periods. Overall, mixing the food and animal waste can be utilized for improving compost maturity, but more research should be conducted to make high quality of food waste compost with animal waste in agricultural fields.

Fabrication of Porous Titanium Parts by Direct Laser Melting of Ti-TiH2 Mixing Powder (Ti-TiH2 혼합 분말의 레이저 직접 용융 공정을 이용한 다공성 티타 늄 부품 제조 연구)

  • Yun, H.J.;Seo, D.M.;Woo, Y.Y.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.28 no.1
    • /
    • pp.21-26
    • /
    • 2019
  • Direct Laser Melting (DLM) of $Ti-xTiH_2$ (mixing ratio x = 2, 5, 10 wt.%) blended powder is characterized by producing porous titanium parts. When a high energy laser is irradiated on a $Ti-TiH_2$ blended powder, hydrogen gas ($H_2$) is produced by the accompanying decomposition of the $TiH_2$ powder, and acts as a pore-forming and activator. The hydrogen gas trapped in a rapidly solidified molten pool, which generates porosity in the deposited layer. In this study, the effects of a $TiH_2$ mixing ratio and the associated processing parameters on the development of a porous titanium were investigated. It was determined that as the content of $TiH_2$ increases, the resulting porosity density also increases, due to the increase of $H_2$ produced by $TiH_2$. Also, porosity increases as the scan speed increases. As fast solidified melting pools do not provide enough time for $H_2$ to escape, the faster the scan speed, the more the resulting $H_2$ is captured by the process. The results of this study show that the mixing ratio (x) and laser machining parameters can be adjusted to actively generate and control the porosity of the DLM parts.

The Effect of Aerated Oil Considering Live Oil Surface Tension on High-Speed Journal Bearing

  • Chun, Sang-Myung
    • KSTLE International Journal
    • /
    • v.2 no.2
    • /
    • pp.103-113
    • /
    • 2001
  • The influence of aerated oil on high-speed journal bearing is examined by classical thermohydrodynamic lubrication theory coupled with analytical models for viscosity and density of air-oil mixture in fluid-film bearing. Convection to the walls and mixing with supply oil and re-circulating oil are considered. The live oil surface tension is considered as functions of temperature, API gravity and air volume ratio. With changing eccentricity ratio, it is investigated the effects of air bubbles on the performance of a high-speed plain journal bearing. Just at the moderate eccentricity ratios, even if the involved aeration levels are not so severe and the entrained air bubble sizes are not so small, it is found that the bearing load and friction farce may be changed so visibly for the high speed bearing operation.

  • PDF

Effect of Dynamic SGS Model in a Kerosene-LOx Swirl Injector under Supercritical Condition

  • Heo, Jun-Young;Hong, Ji-Seok;Sung, Hong-Gye
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.254-263
    • /
    • 2015
  • In this study, numerical simulations are carried out to investigate the dynamic SGS model effects in a Kerosene-LOx coaxial swirl injector under high pressure conditions. The turbulent model is based on large-eddy simulation (LES) with real-fluid transport and thermodynamics. To assess the effect of the dynamic subgrid-scale (SGS) model, the dynamic SGS model is compared with that of the algebraic SGS model. In a swirl injector under supercritical pressure, the characteristics of temporal pressure fluctuation and power spectral density (PSD) present comparable discrepancies dependant on the SGS models, which affect the mixing characteristics. Mixing efficiency and the probability density (PDF) function are conducted for a statistical description of the turbulent flow fields according to the SGS models. The back-scattering of turbulent kinetic energy is estimated in terms of the film thickness of the swirl injector.

Modeling and analysis of an LDPE autoclave reactor with axial dispersion

  • Park, Seung-Koo;Wi, Jeong-Ho;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1693-1698
    • /
    • 1991
  • An axial dispersion model is developed for the slim reactor employed in the LDPE autoclave process so that imperfect mixing caused by large L/D ratio (10-20) may be quantified by Peclet number. The model is then used to investigate the effect of mixing on the reactor performance represented by the monomer conversion, the reactor temperature, the molecular weight, and the polydispersity. In addition, the existence of steady state multiplicity is identified with the initiator feed concentration or the feed temperature as the bifurcation parameter. The effects of the initiator feed concentration and the feed temperature are also examined.

  • PDF

Roughness effect on performance of a multistage axial compressor (다단 축류압축기의 표면조도가 성능에 미치는 영향)

  • Han, Kyung-ho;Kang, Young-seok;Kang, Shin-hyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.264-270
    • /
    • 2002
  • This paper presents roughness effects on flow characteristics and efficiency of multi-stage axial compressor using numerical simulation. which is carried out with a commercially available software, CFX-TASCflow. In this paper, the third of four stages of GE low pressure compressor is considered including me stator and rue rotor. Mixing-plane approach is adopted to model the interface between the stator and the rotor: it is appropriate for steady state simulation. First, a flat plate simulation was performed to validate how exact the numerical simulation predicts the roughness effect for smooth and rough walls. Then GE compressor model was calculated about at each roughness height. Concluding, very small roughness height largely affects the performance of compressor and the increasing rate of loss decrease as roughness height increase.

  • PDF

All-optical wavelength conversion of 2.5 Gb/s optical signals by four-wave mixing in a semiconductor optical amplifier (반도체 광 증폭기내에서의 4광파 혼합을 이용한 2.5Gb/s 광신호의 전광 파장변환)

  • 방준학;서완석;이성은
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.8
    • /
    • pp.69-75
    • /
    • 1998
  • We demonstrate wavelength conversion of 2.5Gb/s optical signals by four-wave mixing (FWM) in a semiconductor optical amplifier (SOA). We investigate the effect of input pump and signal powers on the coversion efficiency, optical signal-to-noise ratio (OSNR) and extinction ratio to be a measure of performance in a wavelength converter. As a result, we show that the maximum bit error rate (BER) performance can be obtained by co promising among high-vonversion efficiency (minimum Pprobe), high-OSNR (maximum Pprobe) and low-cross-gain saturation effects (Pprobe kept at least 6dB weaker than Ppump). In our experiment, we obtain optimum performance at +3 dBm pump power and -6dBm signal power. The power penalty incurred in the wavelength conversion can be minimized by careful selection of the input pump and signal powers. We show that about 0.5dB power penalty for 3.2nm wavelength coversion at 10-10 BER is achievable.

  • PDF

The Study on the Property of High Strength Concrete Used Copper Slag (동제련 슬래그 잔골재를 이용한 고강도 콘크리트의 물성에 관한 연구)

  • 박정우;김상미;강태경;백민수;임남기;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.99-104
    • /
    • 2001
  • Slag product has the possibility as alternative aggregate and sand under the circumstance of natural resource shortage. Copper slag is the by-product produced in process of copper industry. Recycling the slag in construction industry could give positive effects on the environmental preservation. This study presents that the fundamental properties of high strength concrete which used copper slag as alternative sand. Testing factors are concrete's slump, bleeding, air contents and compressive strength. The results of this study are as follows. (1) Mixing of W/C 30%, substitution rate 25% shows the best slump. As substitution rates are going up, concrete slump is uprising and air contents are downsizing. (2) The bleeding of concrete becomes more serious as substitution rates are going up. (3) The best compressive strength of copper slag concrete is achieved in mixing of W/C 30%, substitution rate 25%.

  • PDF

A STUDY ON CHARACTERISTICS OF EECTRO-OSMOTIC FLOWS UNDER THE LOCAL VARIATION OF THE ELECTRIC FIELD (전기장의 국소변화에 따른 전기삼투 유동 및 혼합 특성해석)

  • Heo H. S.;Jeong J. H.;Sub Y. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.27-30
    • /
    • 2005
  • In a microfluidic chips pressure driven flow or electro-osmotic flow has been usually employed to deliver bio-samples. Flow in the chips is usually slow and the mixing performance is poor. A micro-mixer with a rapid mixing is important for practical applications. In this study a newly designed and electro-osmotic driven micro-mixer is proposed. This design is comprised of a channel and a series of metal electrodes periodically attached on the side surface. In this configuration electro-osmotic flows and the stirring effects are simulated three-dimensionally using a commercial code, CFD-ACE. Focus is given the effect on the electro-osmotic flow characteristics under the local variation of the electric field.

  • PDF