
Copyright ⓒ The Korean Society for Aeronautical & Space Sciences
Received: March 26, 2015    Revised: May 26, 2015    Accepted: May 27, 2015

254 http://ijass.org pISSN: 2093-274x eISSN: 2093-2480

Paper
Int’l J. of Aeronautical & Space Sci. 16(2), 254–263 (2015)
DOI: http://dx.doi.org/10.5139/IJASS.2015.16.2.254 

Effect of Dynamic SGS Model in a Kerosene-LOx Swirl Injector under 
Supercritical Condition

Jun-Young Heo* and Ji-Seok Hong**
Department of Aerospace and Mechanical Engineering, Korea Aerospace University, Goyang 412-791, Korea

Hong-Gye Sung***
School of Aerospace and Mechanical Engineering, Korea Aerospace University, Goyang 412-791, Korea

Abstract

In this study, numerical simulations are carried out to investigate the dynamic SGS model effects in a Kerosene-LOx coaxial 

swirl injector under high pressure conditions. The turbulent model is based on large-eddy simulation (LES) with real-fluid 

transport and thermodynamics. To assess the effect of the dynamic subgrid-scale (SGS) model, the dynamic SGS model is 

compared with that of the algebraic SGS model. In a swirl injector under supercritical pressure, the characteristics of temporal 

pressure fluctuation and power spectral density (PSD) present comparable discrepancies dependant on the SGS models, 

which affect the mixing characteristics. Mixing efficiency and the probability density (PDF) function are conducted for a 

statistical description of the turbulent flow fields according to the SGS models. The back-scattering of turbulent kinetic energy 

is estimated in terms of the film thickness of the swirl injector. 
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Nomenclature

A1, A2, B1, B0, C1, C0	 =	 coefficients for estimation of  

a, b 	 =	 attraction and repulsive factor

c	 =	 speed of sound 

D 	 =	 diffusivity

d 	 =	�� functions of critical compressibility 

factor

d1, d2, d3, d4, d5, d6  	 =	 coefficients for estimation of δ1 

E	 =	 specific total energy

H 	 =	 energy flux

k 	 =	�� functions of critical compressibility 

factor	

Mw 	 =	 molecular weight

Nx, Ny, Nz 	 =	 the number of grids for each direction

f 	 =	 mixture fraction

p 	 =	 pressure

Q, q 	 =	 heat flux

Ru 	 =	 universal gas constant

Sf, So 	 =	 swirl number of fuel and oxidizer

T 	 =	 temperature

t 	 =	 time

U 	 =	 diffusion velocity

u 	 =	 velocity

V 	 =	 volume

x 	 =	 spatial coordinate

Z 	 =	�� compressibility factor

Greek

α 	 =	 function for cubic equation of state

δ 	 =	 Kronecker delta

δ1, δ2 	 =	�� functions of critical compressibility 

factor

2 

D     = diffusivity 

d     = functions of critical compressibility factor 

1 2 3 4 5 6, , , , ,d d d d d d   = coefficients for estimation of 1  

E     = specific total energy 

H     = energy flux 

k     = functions of critical compressibility factor  

wM     = molecular weight 

, ,x y zN N N    = the number of grids for each direction 

f     = mixture fraction 

p     = pressure 

,Q q     = heat flux 

uR     = universal gas constant 

,f oS S     = swirl number of fuel and oxidizer 

T     = temperature 

t     = time 

U     = diffusion velocity 

u     = velocity 

V     = volume 

x     = spatial coordinate 

Z     = compressibility factor 

Greek 

     = function for cubic equation of state 

     = Kronecker delta 

1 2,      = functions of critical compressibility factor 

   = species diffusive flux 

     = association parameter 

     = thermal conductivity 

     = viscosity 

 	 =	 species diffusive flux

κ 	 =	 association parameter
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λ 	 =	 thermal conductivity

μ 	 =	 viscosity

μr 	 =	 dimensionless dipole moment

ρ 	 =	 density

σ 	 =	 viscous work

τ 	 =	 viscous shear stress

Ф 	 =	 species flux 

Ωv 	 =	 viscosity collision integral

ω 	 =	 acentric factor

Superscripts

- 	 =	 time averaging

~ 	 =	 Favre-averaged resolved-scale

sgs  	 =	 subgrid-scale

Subscripts

c 	 =	 critical property

f 	 =	 parameters of fuel injector

i, j, ij 	 =	 spatial coordinate index

k 	 =	 species index

n	 =	 parameters of nozzle

o 	 =	�� parameters of oxidizer injector or 

outer side

r	 =	 reduced property

s 	 =	 parameters of swirl zone

t	 =	 tangential direction

 

1. Introduction

A liquid rocket engine for a space launch vehicle 

operates at high pressure in order to increase the thrust and 

combustion efficiency so that its propellants are exposed to 

supercritical conditions in the combustion chamber. The 

supercritical condition refers to the state beyond its critical 

point. In such conditions, the propellants experience the 

transition of thermo-physical properties differently than 

those of subcritical conditions. After the liquid propellant 

is introduced into the injector and combustion chamber, 

its properties are varied continuously and the distinction 

between gas and liquid becomes ambiguous. The process 

goes through a “liquid like → gas like” at supercritical 

pressure, whereas it undergoes “liquid core → break up → 

atomization → vaporization” at subcritical pressures. Also, 

as the temperature increases, the thermodynamic properties 

vary continuously and a distinction between the liquid and 

gas phase becomes ambiguous under the high pressure 

condition [1]. Intermolecular forces and the molecular body 

volume are considered to be important factors in the real 

fluid. In order to understand the real fluid behavior, effects 

such as compressibility, van der Waals force, molecular 

dissociation, and non-equilibrium thermodynamic quantity 

must be taken into account. An equation of state capable of 

handling the behavior of real fluid at a high pressure and 

low temperature regime is required for real fluid. Therefore, 

conventional predictions of thermodynamic properties 

and mixing dynamics become inappropriate in explaining 

thermodynamic relationships for a wide range of pressures 

and temperatures which have to employ recent advances 

in numerical research. The thermo-physical characteristics 

of liquid oxygen/gaseous hydrogen flame in a shear coaxial 

injector at supercritical pressure using direct numerical 

simulation have been investigated by Oefelein [2]. The 

diffusion dominated mode of combustion and the sharp 

gradients of thermo-physical properties were identified in 

the region close to the injector element. Also, the results 

show that a strong recirculation zone formed near the LOx 

post and the unsteady stagnation area inside the zone 

provides the primary flame holding mechanism. Zong and 

Yang [3] applied a large eddy simulation for the identification 

of cryogenic fluid dynamics in a swirl injector operating at 

supercritical pressure. They observed the hydrodynamic 

instabilities in both the axial and azimuthal directions within 

the liquid oxygen film and the flow recirculation in the 

vicinity of the injector exit. This provided insight about the 

flow dynamics in the LRE swirl injector. Giorgi and Leuzzi [4] 

performed a numerical analysis of mixing and combustion 

in a liquid oxygen/gaseous methane shear coaxial injector 

at supercritical conditions. The study focused on the 

importance of the real fluid effect. Wang et al. [5] studied 

the convective heat transfer effect in a flowfield of cryogenic 

fluid under supercritical pressure. The study showed that the 

conventional approach cannot be used for the prediction of 

heat transfer at supercritical conditions.

A turbulence structure with turbulent energy is represented 

by the vorticity, and the vortex structure at a high flow speed 

causes a wide range of eddy sizes. The large eddy is generated 

by the turbulence energy, the turbulent energy cascade 

occurred from large eddy to small eddy. Since the small 

eddy is easily dissipated, the turbulence energy vanished. 

When using the time averaging technique, the turbulence 

modeling will be required in the overall turbulence region. 

However, for each problem, the turbulence model needs to 

adjust the coefficients in order to increase the simulation 

accuracy. To overcome these defects, the eddy which is 

larger than the grid size is computed directly, the small 

eddy is calculated by the SGS (sub-grid scale) model for 

improving the accuracy of the turbulent flow; LES (Large-

Eddy Simulation). Since the energy dissipation occurred by 

small eddies, the SGS modeling is an important part of the 

LES. Most of the SGS models are based on the eddy-viscosity 
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type model. The algebraic Smagorinsky model proposed by 

Lilly [6, 7] is the most widely used in LES. The eddy viscosity 

is calculated algebraically to simplify the equation, and it 

is based on the equilibrium hypothesis. Germano et al. [8] 

pointed out that the algebraic model has several limitations. 

First of all, the algebraic model can't capture the backscatter 

of energy, which refers to the backward turbulent energy 

occurring from the small eddy to large eddy. Because this 

phenomenon is important in the transition region, they 

proposed a dynamic subgrid-scale eddy viscosity model to 

improve this deficiency. The dynamic model calculates the 

SGS model coefficients using the information of the resolved 

flow field during the simulation. Many researchers have 

studied this dynamic concept across a wide field of research. 

Jaberi and Colucci [9] presented localized SGS models in 

turbulent flows. The statistics such as PDF (probability 

density function) of the resolved field in LES are compared 

with results simulated in DNS. Jammalamadaka et al. [10] 

studied the effect of the subgrid-scale stress term on the 

velocity field and shock-dependence. A priori and a posteriori 

were also conducted to indicate the new dynamic model. 

Urzay et al. [11] studied the dynamics of the backscatter of 

kinetic energy in high-speed turbulent reacting flows. The 

effects of compressibility and combustion according to the 

SGS backscatter of kinetic energy were analyzed. 

In this study, a comparison and analysis of the mixing 

characteristics are conducted in accordance with sub-grid 

scale models to take account of the effect of the turbulence 

viscosity. It is also investigated how the dissimilarity between 

the predicted results affects the characteristics of the flow 

structure. Power spectral densities of pressure fluctuations 

are also analyzed to evaluate the instability caused by 

pressure oscillation in a swirl injector at the supercritical 

condition.

2. Numerical Method

2.1 Filtered Transport Equations

The theoretical formulation is based on the filtered Favre 

averaged mass, momentum, energy, and mixture fraction 

conservation equations in Cartesian coordinates. Turbulent 

closure is achieved by using a Large-eddy Simulation 

(LES) in which large scale turbulent structures are directly 

computed and the small scale structures are treated with the 

analytic or empirical modeling. The governing equations can 

be written as:
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critical compressibility factor, cZ . The coefficients related to the terms are represented in Table 1. 
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Transport properties are predicted by Chung’s model. Mass diffusivity is evaluated using Fuller’s 

theorem with the Takahashi method [19]. 

 

2.3 Numerical Scheme 

The governing equations are solved by using the finite volume method. The spatial discretization is 

achieved by employing a fourth order central differencing scheme [17]. The temporal discretization is 

resolved using a fourth order Runge-Kutta scheme for integration of the real time terms. Pressure 

decomposition and preconditioning techniques with dual time stepping are applied to circumvent the 

round-off errors and the convergence difficulties in the momentum equation. The real-gas fluid 

thermodynamic relation is applied to a preconditioning scheme [20]. The code is paralleled using an 

MPI library for a more effective calculation [21-23]. 
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2.3 Numerical Scheme

The governing equations are solved by using the finite 

volume method. The spatial discretization is achieved by 

employing a fourth order central differencing scheme [17]. 

The temporal discretization is resolved using a fourth order 

Runge-Kutta scheme for integration of the real time terms. 

Pressure decomposition and preconditioning techniques 

with dual time stepping are applied to circumvent the 

round-off errors and the convergence difficulties in the 

momentum equation. The real-gas fluid thermodynamic 

relation is applied to a preconditioning scheme [20]. The 

code is paralleled using an MPI library for a more effective 

calculation [21-23].

3. Model Description

Figure 1 shows the coaxial swirl injector geometry as 

well as the swirl numbers of liquid oxygen, and kerosene, at 

1.598 and 6.548, respectively [24]. The injector is composed 

of a closed-type LOx injector with a cavity, an open-type 

Kerosene injector. The kerosene and liquid oxygen are 

injected into the swirl injector through the tangential 

passage. The recess length is 3.2mm (recess number = 1), 

and at this condition, a mixing layer is touching the tip of 

the kerosene injector. The geometric parameters of the 

injector are listed in Table 2.

The thickness of the LOx post tip is 0.6 mm, and the 

Table 1. Coefficients for Estimation of δ1 and k  
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Table 1. Coefficients for Estimation of 1  and k  
1  k  

1d  0.428363 1A  -2.4407 

2d  18.496215 0A  0.0017 

3d  0.338426 1B  7.4513 

4d  0.660000 0B  1.9681 

5d  789.723105 1C  12.504 

6d  2.512392 0C  -2.7238 
 

Transport properties are predicted by Chung’s model. Mass diffusivity is evaluated using Fuller’s 

theorem with the Takahashi method [19]. 

 

2.3 Numerical Scheme 

The governing equations are solved by using the finite volume method. The spatial discretization is 

achieved by employing a fourth order central differencing scheme [17]. The temporal discretization is 

resolved using a fourth order Runge-Kutta scheme for integration of the real time terms. Pressure 

decomposition and preconditioning techniques with dual time stepping are applied to circumvent the 

round-off errors and the convergence difficulties in the momentum equation. The real-gas fluid 

thermodynamic relation is applied to a preconditioning scheme [20]. The code is paralleled using an 

MPI library for a more effective calculation [21-23]. 

 

3. Model Description 

Figure 1 shows the coaxial swirl injector geometry as 

well as the swirl numbers of liquid oxygen, and kerosene, at 

1.598 and 6.548, respectively [24]. The injector is composed 

of a closed-type LOx injector with a cavity, an open-type 

Kerosene injector. The kerosene and liquid oxygen are 

injected into the swirl injector through the tangential 

passage. The recess length is 3.2mm (recess number = 1), 

and at this condition, a mixing layer is touching the tip of 

the kerosene injector. The geometric parameters of the 

injector are listed in Table 2.
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diameters of the LOx and kerosene post are 4.1 and 8.1mm, 

respectively. The operation condition is listed in Table 

3. Fig. 2 shows a computational domain, divided into 45 

blocks which are assigned to 45 processors. The total of grid 

points reaches about 765,000 nodes. The Gaussian turbulent 

disturbances are applied to the inlet boundary with an 

intensity of 5% of the mean velocity.

4. Results

4.1 Grid Dependency Test

To determine the proper grid system, a grid sensitivity 

analysis has been performed. Three different grid systems, 

listed in Table 4, are evaluated for validation.

Figure 3 shows the averaged u-velocity contours with 

stream lines for each grid system. The strong radial 

pressure gradient by centrifugal force creates an adverse 

pressure gradient at the exit of the injector, which 

produces the flow recirculation called the central toroidal 

recirculation zone (CTRZ). The frequency of the CTRZ is 

determined by its characteristics of length and velocity 

[25]. The characteristic length and velocity are defined as 

a radius of CTRZ and an order of the velocity of CTRZ, 

respectively.

Table 2. Geometric Parameters of an Injector, mm
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Injector Coaxial Swirl 
Chamber Pressure 100 bar 

Fuel Kerosene; 350 K 
Oxidizer Liquid Oxygen; 103 K 

Mass Flow Rate 
Fuel 0.084 kg/s 

Oxidizer 0.232 kg/s 
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4. Results 

4.1 Grid Dependency Test 

Table 4. Grid System 
 Nx Ny Nz (1/Ntotal)1/3 

M1 25 15 10 0.0640 
M2 50 30 10 0.0405 
M3 75 45 10 0.0309 
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Fig. 3. Averaged u-Velocity Contours with Stream Line for Three Grid Systems 
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To determine the proper grid system, a grid sensitivity analysis has been performed. Three different 

grid systems, listed in Table 4, are evaluated for validation. 

Figure 3 shows the averaged u-velocity contours with stream lines for each grid system. The strong 

radial pressure gradient by centrifugal force creates an adverse pressure gradient at the exit of the 

injector, which produces the flow recirculation called the central toroidal recirculation zone (CTRZ). 

The frequency of the CTRZ is determined by its characteristics of length and velocity [25]. The 
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characteristic length and velocity are defined as a radius of CTRZ and an order of the velocity of 

CTRZ, respectively. 

10 1
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      (20) 

In CTRZ, the oscillation pressure induced by the mixing process of fuel and oxygen transfers back 

to the upstream and affects the wave length inside the oxygen injector. Since the oscillatory flow 

characteristic plays an important role for determining the flow instabilities of the injector, the 

frequency is compared to three grid systems. Fig. 4 represents the most dominant frequency at probe 3 

shown in Fig. 9. In the case of M1, due to the large size of CTRZ, the excited frequency is lower than 

that of the higher-resolution grids, M2 and M3, but the frequencies of M2 and M3 are identical as 

shown in Fig. 4. Therefore, M2 was selected for this study. 

 

 
Fig. 5. Frequency Spectra of Turbulent Kinetic Energy for M2 

 

The frequency spectra of turbulent kinetic energy at the mixing layer are shown in Fig. 5. The 

standard -5/3 law based on the Kolmogorov theory is observed, which supports that the M2 grid 

system is reasonable. 
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Both models provide mixing shear layers of Kerosene and 

LOx, vorticies break up, and a central recirculation zone, 

which are the general features of swirl injectors, with similar 

overall structures. The dynamic SGS model has, however, a 

stronger processing vortex core (PVC), resulting in the larger 

central toroidal recirculation zone (CTRZ) as shown in Fig. 7. 

In the dynamic SGS model, the swirling velocity is faster than 

that of the algebraic SGS model since the dynamic model 

can capture the local energy generation due to the back 

scattering effect. Therefore, the size of the CTRZ increases as 

12 

4. Results 

4.1 Grid Dependency Test 

Table 4. Grid System 
 Nx Ny Nz (1/Ntotal)1/3 

M1 25 15 10 0.0640 
M2 50 30 10 0.0405 
M3 75 45 10 0.0309 

 

 

 
             (a) M1                     (b) M2                       (c) M3 

Fig. 3. Averaged u-Velocity Contours with Stream Line for Three Grid Systems 
 

  
Fig. 4. Comparison of the Most Dominant Frequency at Probe 3 

 

To determine the proper grid system, a grid sensitivity analysis has been performed. Three different 

grid systems, listed in Table 4, are evaluated for validation. 

Figure 3 shows the averaged u-velocity contours with stream lines for each grid system. The strong 

radial pressure gradient by centrifugal force creates an adverse pressure gradient at the exit of the 

injector, which produces the flow recirculation called the central toroidal recirculation zone (CTRZ). 

The frequency of the CTRZ is determined by its characteristics of length and velocity [25]. The 

                                                                    (a) M1                                                           (b) M2                                                          (c) M3

Fig. 3. Averaged u-Velocity Contours with Stream Line for Three Grid Systems

12 

4. Results 

4.1 Grid Dependency Test 

Table 4. Grid System 
 Nx Ny Nz (1/Ntotal)1/3 

M1 25 15 10 0.0640 
M2 50 30 10 0.0405 
M3 75 45 10 0.0309 

 

 

 
             (a) M1                     (b) M2                       (c) M3 

Fig. 3. Averaged u-Velocity Contours with Stream Line for Three Grid Systems 
 

  
Fig. 4. Comparison of the Most Dominant Frequency at Probe 3 

 

To determine the proper grid system, a grid sensitivity analysis has been performed. Three different 

grid systems, listed in Table 4, are evaluated for validation. 

Figure 3 shows the averaged u-velocity contours with stream lines for each grid system. The strong 

radial pressure gradient by centrifugal force creates an adverse pressure gradient at the exit of the 

injector, which produces the flow recirculation called the central toroidal recirculation zone (CTRZ). 

The frequency of the CTRZ is determined by its characteristics of length and velocity [25]. The 

Fig. 4. Comparison of the Most Dominant Frequency at Probe 3

13 

characteristic length and velocity are defined as a radius of CTRZ and an order of the velocity of 

CTRZ, respectively. 

10 1
0.01

CharacteristicVelocityf kHz
Characteristic Length

      (20) 

In CTRZ, the oscillation pressure induced by the mixing process of fuel and oxygen transfers back 

to the upstream and affects the wave length inside the oxygen injector. Since the oscillatory flow 

characteristic plays an important role for determining the flow instabilities of the injector, the 

frequency is compared to three grid systems. Fig. 4 represents the most dominant frequency at probe 3 

shown in Fig. 9. In the case of M1, due to the large size of CTRZ, the excited frequency is lower than 

that of the higher-resolution grids, M2 and M3, but the frequencies of M2 and M3 are identical as 

shown in Fig. 4. Therefore, M2 was selected for this study. 

 

 
Fig. 5. Frequency Spectra of Turbulent Kinetic Energy for M2 

 

The frequency spectra of turbulent kinetic energy at the mixing layer are shown in Fig. 5. The 

standard -5/3 law based on the Kolmogorov theory is observed, which supports that the M2 grid 

system is reasonable. 

 
4.2 Effects of Dynamic SGS Model 

Figure 6 represents a comparison of the vorticity magnitude obtained by both the algebraic SGS 

and dynamic SGS models; the algebraic model result is up while the dynamic model result is down.  

Fig. 5. Frequency Spectra of Turbulent Kinetic Energy for M2

14 
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larger central toroidal recirculation zone (CTRZ) as shown in Fig. 7. In the dynamic SGS model, the 

swirling velocity is faster than that of the algebraic SGS model since the dynamic model can capture 

the local energy generation due to the back scattering effect. Therefore, the size of the CTRZ 

increases as compared with the algebraic SGS model [8]. 
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Fig. 6. ��Vorticity Magnitude of a Swirl Injector; Algebraic Model (up) 
and Dynamic Model (down)
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compared with the algebraic SGS model [8].

A pressure oscillation in the injector causes instability 

in the mixing and combustion  creating a requirement for 

accurate modeling. The dynamic SGS model is known to 

have a high accuracy in complex flow fields [8] such as that 

of turbulent mixing of the LRE injector. This is due to the 

calculation of the eddy viscosity in accordance with the local 

flow characteristics. The pressure fluctuations at probe 1 are 

compared with the SGS models in Fig. 8. A higher amplitude 

and faster oscillation in the dynamic SGS model over that of 

the algebraic SGS model is observed. 

For a clearer understanding of this, a frequency analysis 

has been performed using the power spectrum densities 

calculation. The pressure fluctuation and PSD analysis 

are performed to analyze the dynamic characteristics 

of the flow structure. Fig. 9 shows the locations of the 

pressure measurements: inner side of injector (probe 1 

and 2), near the LOx post (probe 3), phase-change region 

(probe 4), mixing layer (probe 5), and front of the CTRZ 

(probe 6). 

Figure 10 represents the power spectral densities (PSD) 

of the pressure fluctuations at each location. The lower 

frequency, 1.05-1.08 kHz, is dominant in the LOx injector 

while the higher frequency is dominantly observed in 

the kerosene injector. Overall, the dominant frequencies 

are similar in both cases, but the frequencies of the 

dynamic model tend to be faster. The amplitude of the 

dynamic model is larger inside the injector even though 

the difference may disappear downstream. The dynamic 

model can capture the smaller scale eddies due to the 

calculation of the turbulent viscosity using the local flow 

properties. To compare the mixing level on the SGS model, 

the mixing efficiency is calculated using the following 

formula:
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Fig. 10. PSD of Pressure Fluctuations on SGS Models 

 

Figure 10 represents the power spectral densities (PSD) of the pressure fluctuations at each location. 

The lower frequency, 1.05-1.08 kHz, is dominant in the LOx injector while the higher frequency is 

dominantly observed in the kerosene injector. Overall, the dominant frequencies are similar in both 

cases, but the frequencies of the dynamic model tend to be faster. The amplitude of the dynamic 

model is larger inside the injector even though the difference may disappear downstream. The 

dynamic model can capture the smaller scale eddies due to the calculation of the turbulent viscosity 

using the local flow properties. To compare the mixing level on the SGS model, the mixing efficiency 

is calculated using the following formula: 
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where FuelY is the mass fraction of kerosene. The parameter   is determined by relating the local 

equivalence ratio, local  to the global equivalence ratio, global . Therefore, local mixing efficiency is 

less than 1 when the local equivalence ratio is larger than the global equivalence ratio. The mixing 

efficiency represents how much fuel is spread into the combustion chamber. Fig. 11 shows the time-

averaged mixing efficiency. In both models, the efficiency increases as it moves downstream after the 

Fig. 10. PSD of Pressure Fluctuations on SGS Models
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where FuelY is the mass fraction of kerosene. The parameter   is determined by relating the local 

equivalence ratio, local  to the global equivalence ratio, global . Therefore, local mixing efficiency is 

less than 1 when the local equivalence ratio is larger than the global equivalence ratio. The mixing 

efficiency represents how much fuel is spread into the combustion chamber. Fig. 11 shows the time-

averaged mixing efficiency. In both models, the efficiency increases as it moves downstream after the 

(21)

where YFuel is the mass fraction of kerosene. The parameter 

α is determined by relating the local equivalence ratio, 

ϕlocal to the global equivalence ratio, ϕglocal. Therefore, local 

mixing efficiency is less than 1 when the local equivalence 

ratio is larger than the global equivalence ratio. The mixing 

efficiency represents how much fuel is spread into the 

combustion chamber. Fig. 11 shows the time-averaged 

mixing efficiency. In both models, the efficiency increases as 

it moves downstream after the LOx post, where the mixing 

starts. The dynamic model shows it reaches perfect mixing at 

a slightly earlier state. The increase of the mixing efficiency 

in the dynamic model can be explained by the effect of the 

small scale turbulence eddy obtained from local turbulent 

flow dynamics. 

Figure 12 represents distributions of the power density 

function (PDF) of u-velocity perturbation in the chamber 

over an operation time. Both models provide a Gaussian 

distribution. In the combustion chamber, where there is 

a mixing zone by the swirling flow, the vortex is generated 

actively, which produces a wider range of velocity 

perturbation in the dynamics model. So, the dynamic model 

can capture more small eddies, resulting in better mixing.

Figure 13 shows the turbulent viscosity on an SGS model. 

Data is extracted from the boundary layer near the wall at 

the center of the oxidizer injector. The turbulent viscosity of 

the dynamic model has a large fluctuation compared to that 

of the algebraic model. In the dynamic model, the turbulent 

viscosity estimates negative values; which indicates a 

backscatter of kinetic energy. This phenomenon represents 

a reverse energy-transfer process from the subgrid to the 

supergrid scale which has a significant effect on the energy 

dissipation and generation activity near the wall.

This discrepancy in calculation affects the film thickness 

of the swirl injector due to a strong momentum occurring by 

the backscatter of kinetic energy. Fig. 14 shows the density 

contour comparison between the algebraic and dynamic 

model when the tangential velocity is twice the velocity of 
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Figure 13 shows the turbulent viscosity on an SGS model. Data is extracted from the boundary 

layer near the wall at the center of the oxidizer injector. The turbulent viscosity of the dynamic model 

has a large fluctuation compared to that of the algebraic model. In the dynamic model, the turbulent 

viscosity estimates negative values; which indicates a backscatter of kinetic energy. This phenomenon 

represents a reverse energy-transfer process from the subgrid to the supergrid scale which has a 

significant effect on the energy dissipation and generation activity near the wall. 

This discrepancy in calculation affects the film thickness of the swirl injector due to a strong 

momentum occurring by the backscatter of kinetic energy. Fig. 14 shows the density contour 

comparison between the algebraic and dynamic model when the tangential velocity is twice the 

velocity of the baseline case. The dynamic model's film is thinner than the algebraic model's result, 

leading to the creation of a long gaseous core in the liquid oxygen injector. 
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the baseline case. The dynamic model's film is thinner than 

the algebraic model's result, leading to the creation of a long 

gaseous core in the liquid oxygen injector.

5. Conclusions

A numerical simulation has been performed to 

investigate the effect of the sub-grid scale models for large 

eddy simulation. The supercritical mixing characteristics 

of the swirl injector are discussed in this study. The RK-PR 

model is applied to calculate the real-fluid properties of 

kerosene and oxygen. The dynamic SGS model is compared 

with the classical algebraic SGS model. In terms of flow 

structure, the dynamic SGS produces a larger size of the 

CTRZ and a wider range of eddies, resulting in a faster 

flow fluctuation. The mixing efficiency is then analyzed to 

compare the level of mixing on SGS models. The dynamic 

model reaches perfect mixing at a slightly earlier state since 

it has a wide range of turbulent viscosities. To analyze the 

statistical quantities, the PDF of the u-velocity fluctuation 

is compared between two models. The dynamic SGS 

model generates a wider range of u-velocity perturbation. 

To assess the detailed characteristics of the dynamic SGS 

model, the turbulent viscosity is evaluated near the wall 

at the center of the oxidizer injector. In the dynamic SGS 

model, the turbulent viscosity has negative values referred 

to as a backscatter of kinetic energy which is an attractive 

characteristic of the turbulent kinetic energy transfer. In 

addition, the film thickness of the dynamic SGS model is 

thinner than that in the algebraic SGS model because the 

swirl momentum is maintained. As a result, the dynamic 

SGS model provides a more reasonable turbulent energy 

transfer and turbulent flow structures of a co-axial swirl 

injector under high-pressure condition.
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