• 제목/요약/키워드: mixing coefficient

검색결과 434건 처리시간 0.028초

가압경수로 이중냉각핵연료의 내측수로 막힘에 대한 전산유체역학 해석 (CFD ANALYSIS OF FLOW CHANNEL BLOCKAGE IN DUAL-COOLED FUEL FOR PRESSURIZED WATER REACTOR)

  • 인왕기;신창환;박주용;오동석;이치영;전태현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.269-274
    • /
    • 2011
  • A CFD analysis was performed to examine the inner channel blockage of dual-cooled fuel which has being developed for the power uprate of a pressurized water reactor (PWR). The dual-cooled fuel consists of an annular fuel pellet($UO_2$) and dual claddings as well as internal and external cooling channels. The dual-cooled annular fuel is different from a conventional solid 려el by employing an internal cooling channel for each fuel pellet as well as an external cooling channel. One of the key issues is the hypothetical event of inner channel blockage because the inner channel is an isolated flow channel without the coolant mixing between the neighboring flow channels. The inner channel blockage could cause the Departure from Nucleate Boiling (DNB) in the inner channel that eventually causes a fuel failure. This paper presents the CFD simulation of the flow through the side holes of the bottom end plug for the complete entrance blockage of the inner channel. Since the amount of coolant supply to the inner channel depends on largely the pressure loss at the side hole, the pressure loss coefficient of the side hole was estimated by the CFD analysis. The CFD prediction of the loss coefficient showed a reasonable agreement with an experimental data for the complete blockage of both the inner channel entrance and the outer channel. The CFD predictions also showed the decrease of the loss coefficient as the outer channel blockage increases.

  • PDF

혼합냉매의 열역학적 물성치 추산에 관한 연구 (Studies on the Estimation of Theromodynamic Properties for the Non-Azeotropic Refrigerant Mixtures)

  • 김민수;김동섭;노승탁;김욱중;윤재호
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1337-1348
    • /
    • 1990
  • 본 연구에서는 Peng-Robinson 상태 방정식을 기본으로 하여 먼저 단일 성분의 냉매에 대한 열역학적 물성치를 구한 뒤 그 정확도를 검증하고, 동일한 형태의 상태식 과 적절한 혼합 법칙을 통해 혼합냉매의 기액 평형 상태와 냉동 및 열펌프 사이클 해 석에 필요한 엔탈피와 엔트로피 등의 열역학적 물성치를 추산하고자 한다.단일 성 분의 냉매로서는 R13B1, R22, R12, R152a, R114를 택하였고, 혼합냉매로서는 앞의 단 일성분 냉매를 혼합한 것 중에서 그 기초적인 실험 자료가 아미 알려진 R13B1/R114, R22/R114, R12/R114 R152a/R114, R13B1/R152a 및 R13B1/R12를 택하였다. 이는 추후 상이한 냉매를 단일식으로 나타낼 수 있는 대응상태의 원리를 사용한 열물성 계산의 기반이 될 수 있을 것이다.

Analysis of Empirical Constant of Eddy Viscosity by k-ε and RNG k-ε Turbulence Model in Wake Simulation

  • Park, Il Heum;Cho, Young Jun;Lee, Jong Sup
    • 해양환경안전학회지
    • /
    • 제25권3호
    • /
    • pp.344-353
    • /
    • 2019
  • The wakes behind a square cylinder were simulated using two-equation turbulence models, $k-{\varepsilon}$ and RNG $k-{\varepsilon}$ models. For comparisons between the model predictions and analytical solutions, we employed three skill assessments:, the correlation coefficient for the similarity of the wake shape, the error of maximum velocity difference (EMVD) of the accuracy of wake velocity, and the ratio of drag coefficient (RDC) for the flow patterns as in the authors' previous study. On the basis of the calculated results, we discussed the feasibility of each model for wake simulation and suggested a suitable value for an eddy viscosity related constant in each turbulence model. The $k-{\varepsilon}$ model underestimated the drag coefficient by over 40 %, and its performance was worse than that in the previous study with one-equation and mixing length models, resulting from the empirical constants in the ${\varepsilon}-equation$. In the RNG $k-{\varepsilon}$ model experiments, when an eddy viscosity related constant was six times higher than the suggested value, the model results were yielded good predictions compared with the analytical solutions. Then, the values of EMVD and RDC were 3.8 % and 3.2 %, respectively. The results of the turbulence model simulations indicated that the RNG $k-{\varepsilon}$ model results successfully represented wakes behind the square cylinder, and the mean error for all skill assessments was less than 4 %.

두 가지 연직혼합방안에 따른 해양대순환모형 혼합층깊이 및 상층수온 모사 민감도 비교 (A Comparison of Two Vertical-Mixing Schemes on the Simulation of the Mixed Layer Depth and Upper Ocean Temperature in an Ocean General Circulation Model)

  • 이동원;장찬주;예상욱;박태욱;신호정;김동훈;국종성
    • Ocean and Polar Research
    • /
    • 제35권3호
    • /
    • pp.249-258
    • /
    • 2013
  • Vertical and horizontal mixing processes in the ocean mixed layer determine sea surface temperature and temperature variability. Accordingly, simulating these processes properly is crucial in order to obtain more accurate climate simulations and more reliable future projections using an ocean general circulation model (OGCM). In this study, by using Modular Ocean Model version 4 (MOM4) developed by Geophysical Fluid Dynamics Laboratory, the upper ocean temperature and mixed layer depth were simulated with two different vertical mixing schemes that are most widely used and then compared. The resultant differences were analyzed to understand the underlying mechanism, especially in the Tropical Pacific Ocean where the differences appeared to be the greatest. One of the schemes was the so-called KPP scheme that uses K-Profile parameterization with nonlocal vertical mixing and the other was the N scheme that was rather recently developed based on a second-order turbulence closure. In the equatorial Pacific, the N scheme simulates the mixed layer at a deeper level than the KPP scheme. One of the reasons is that the total vertical diffusivity coefficient simulated with the N scheme is ten times larger, at maximum, in the surface layer compared to the KPP scheme. Another reason is that the zonal current simulated with the N scheme peaks at a deeper ocean level than the KPP scheme, which indicates that the vertical shear was simulated on a larger scale by the N scheme and it enhanced the mixed layer depth. It is notable that while the N scheme simulates a deeper mixed layer in the equatorial Pacific compared to the KPP scheme, the sea surface temperature (SST) simulated with the N scheme was cooler in the central Pacific and warmer in the eastern Pacific. We postulated that the reason for this is that in the central Pacific atmospheric forcing plays an important role in determining SST and so does a strong upwelling in the eastern Pacific. In conclusion, what determines SST is crucial in interpreting the relationship between SST and mixed layer depth.

액제 정밀계량 장치를 이용한 양액 자동조제 시스템 개발 (Development of Automatic Nutrient-Solution Mixing System Using a Low-Cost and Precise Liquid Metering Device)

  • 이규철;류관희;이정훈;김기영;황호준
    • Journal of Biosystems Engineering
    • /
    • 제22권4호
    • /
    • pp.469-478
    • /
    • 1997
  • This study was conducted to develop an automatic nutrient-solution mixing system for small-scale sewers. The nutrient-solution mixing system consisted of a low-cost and precise metering device and data acquisition & control system with a personal computer. and, the metering device was composed of three parts those were supply pumps, metering cylinders and venturi tube. The system controlled electric conductivity(EC) and pH of nutrient-solution based on the time-based feedback control method with the information about temperature, EC, and pH of the nutrient-solution. The performance of the nutrient-solution mixing system was evaluated through the control of EC and pH while compared with those of commercial system. Also an experimental cultivation of tomato was conducted to verify and to improve the developed system. Results of this study were as follows. 1. The correlation coefficient of meteing device between the flow rate and operating time was 0.9999, and the linear reuession equation computed was y=21.759x, where y is the discharge($g$) and x is the operating time(s). 2. Calculated errors for the developed metering device and two commercial pump were $\pm$0.3% $\pm$2.45% and $\pm$1.38 % FS error respectively. 3. An automatic nutrient-solution mixing system based on a low-cost and precise metering device was developed. 4. The full scale errors of the developed system in controlling EC and pH at 23$\pm$1$^{\circ}C$ were $\pm$0.05mS/cm and $\pm$0.2, respectively 5. When using the commercial system, the controlled values of EC and pH of the 500 $\ell$ of water were 1.29 mS/cm and 6.1 pH for the setting points of 1.4 mS/cm and 6.0 pH respectively at 23$pm1^{\circ}C$. 6. The developed nutrient-solution control system showed $\pm$0.05 ms/cm of deviation from the setting EC value over the experimental cultivation period. 7. The deviation from the average values of Ca and Mg mass content in the several nutrient-solution were 0.5% and 1.8% respectively.

  • PDF

지지격자가 있는 봉다발과 축방향으로 평행한 유동의 압력손실에 관한 실험적 연구 (Experimental Study on Pressure Loss of Flow Parallel to Rod Bundle with Spacer Grid)

  • 이치영;신창환;박주용;인왕기
    • 대한기계학회논문집B
    • /
    • 제36권7호
    • /
    • pp.689-695
    • /
    • 2012
  • 지지격자가 있는 봉다발과 축방향으로 평행한 유동에서, 봉다발 마찰계수와 지지격자 손실계수를 평가하였다. 시험부는 외경 9.5 mm, 길이 2000 mm 인 봉 25 개를 $5{\times}5$ 정사각 구조로 배열하여 제작하였으며, 봉 중심간 거리와 봉 외경의 비는 1.35 였다. 지지격자로는 plain 지지격자, split-vane 지지격자, hybrid-vane 지지격자를 이용하였다. 지지격자가 없는 봉다발의 마찰계수는 기존 상관식과 비교적 잘 일치하였다. 지지격자가 있는 봉다발 실험의 경우, hybrid-vane 지지격자에서 봉다발 마찰계수 및 지지격자 손실계수가 가장 크게 측정되었으며, 이는 지지격자의 유동단면 막음비 증가와 혼합날개 형상에 의한 유동 교란이 증가되기 때문인 것으로 판단된다. Re=$5{\times}10^5$ 조건에서 plain 지지격자, split-vane 지지격자, hybrid-vane 지지격자의 손실계수는 약 0.79, 0.80, 0.88 로 예측되었다.

Prediction of Forced Convective Boiling Heat Transfer Coefficient of Pure Refrigerants and Binary Refrigerant Mixtures Inside a Horizontal Tube

  • Kim, Min-Soo;Hong, Eul-Cheong;Shin, Jee-Young;Kyungdoug Min;Ro, Sung-Tack
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.935-944
    • /
    • 2003
  • Forced convective boiling heat transfer coefficients were predicted for an annular flow inside a horizontal tube for pure refrigerants and nonazeotropic binary refrigerant mixtures. The heat transfer coefficients were calculated based on the turbulent temperature profile in liquid film and vapor core considering the composition difference in vapor and liquid phases, and the nonlinearity in mixing rules for the calculation of mixture properties. The heat transfer coefficients of pure refrigerants were estimated within a standard deviation of 14% compared with available experimental data. For nonazeotropic binary refrigerant mixtures, prediction of the heat transfer coefficients was made with a standard deviation of 18%. The heat transfer coefficients of refrigerant mixtures were lower than linearly interpolated values calculated from the heat transfer coefficients of pure refrigerants. This degradation was represented by several factors such as the difference between the liquid and the overall compositions, the conductivity ratio and the viscosity ratio of both components in refrigerant mixtures. The temperature change due to the concentration gradient was a major factor for the heat transfer degradation and the mass flux itself at the interface had a minor effect.

2차 유동 영역에서 꺽임각 변화에 따른 주름진 사각 덕트에서의 열/물질전달 및 유동 특성 (Two dimensional flow and heat/mass transfer characteristics in rectangular wavy duct with corrugation angle)

  • 권현구;황상동;조형희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2267-2272
    • /
    • 2007
  • The present study investigates the two dimensional flow and heat/mass transfer characteristics of wavy duct with various corrugation angles. For the heat/mass transfer coefficients, a naphthalene sublimation technique is used. Numerical analysis and wall pressure measurement show detailed two dimensional flow features. The corrugation angles change from 145$^{\circ}$ to 100$^{\circ}$. The operating Reynolds numbers based on the duct hydraulic diameter vary from 700 to 3,000. The duct aspect ratio maintains 7.3. On the pressure wall, strong flow mixing enhances heat/mass transfer coefficients at the front position. In addition, the rear side of pressure wall, the near of peak, is affected by the acceleration and the shedding of main flow. On the suction wall, however, flow separation and reattachment lead to the valley and the peak of heat/mass transfer coefficient. Also, highly increasing boundary layer at the suction wall affects the decrease of heat/masst transfer. As decreasing corrugation angles, the spanwise average Sherwood number increases and the peak or the valley positions of the local Sherwood number are varied.

  • PDF

Mixing Rules of Young's Modulus, Thermal Expansion Coefficient and Thermal Conductivity of Solid Material with Particulate Inclusion

  • Hirata, Yoshihiro;Shimonosono, Taro
    • 한국세라믹학회지
    • /
    • 제53권1호
    • /
    • pp.43-49
    • /
    • 2016
  • This analyzed a Young's modulus (E), a thermal expansion coefficient (TEC, ${\beta}$) and a thermal conductivity (${\kappa}$) of the material with simple cubic particulate inclusion using two model structures: a parallel structure and a series structure of laminated layers. The derived ${\beta}$ equations were applied to calculate the ${\beta}$ value of the W-MgO system. The accuracy was higher for the series model structure than for the parallel model structure. Young's moduli ($E_c$) of sintered porous alumina compacts were theoretically related to the development of neck growth of grain boundary between sintered two particles and expressed as a function of porosity. The series structure model with cubic pores explained well the increased tendency of $E_c$ with neck growth rather than the parallel structure model. The thermal conductivity of the three phase system of alumina-mullite-pore was calculated by a theoretical equation developed in this research group, and compared with the experimental results. The pores in the sintered composite were treated as one phase. The measured thermal conductivity of the composite with 0.5-25% porosity (open and closed pores) was in accordance with the theoretical prediction based on the parallel structure model.

산화제 과잉 예연소기 인젝터의 분무 특성에 관한 연구 (An Experimental Study of the Spray Characteristics for an Oxidizer-rich Preburner Injector)

  • 소윤석;양준호;한영민;최성만
    • 한국분무공학회지
    • /
    • 제12권1호
    • /
    • pp.58-64
    • /
    • 2007
  • The spray characteristics of the oxidizer-rich preburner are investigated. This system is generally operated at an oxidizerfuel mixture ratio of 50. The spray quality and mixing performance are very important for safe combustion. To know the spray characteristics of the oxidizer-rich preburner, we have designed various swirl injectors and measured droplet velocity and size by the PDPA system. The flow discharge coefficient of the fuel orifice is $0.12{\sim}0.21$, oxidizer orifice discharge coefficient is $0.16{\sim}0.28$. From the spray visualization, fuel nozzle spray angle is $15^{\circ}{\sim}25^{\circ}$, oxidizer nozzle spray angle is $65^{\circ}{\sim}85^{\circ}$ and combined spray angle is reduced $2^{\circ}{\sim}5^{\circ}$ compared to the oxidizer nozzle only case. From the PDPA measurement, droplet SMD is $175\;{\mu}m$ at 50 mm and $190\;{\mu}m$ at 100 mm of variant 1 combined case. The number concentration measurement revealed the reason of the droplet diameter increasement with distance. That is due to drop coalescence results from collision of drops which is occurred in dense sprays at a long distance from nozzle orifice exit.

  • PDF