• Title/Summary/Keyword: mixed-layer model

Search Result 132, Processing Time 0.021 seconds

Modeling on Hydrogen Effects for Surface Segregation of Ge Atoms during Chemical Vapor Deposition of Si on Si/Ge Substrates

  • Yoo, Kee-Youn;Yoon, Hyunsik
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.275-278
    • /
    • 2017
  • Heterogeneous semiconductor composites have been widely used to establish high-performance microelectronic or optoelectronic devices. During a deposition of silicon atoms on silicon/germanium compound surfaces, germanium (Ge) atoms are segregated from the substrate to the surface and are mixed in incoming a silicon layer. To suppress Ge segregation to obtain the interface sharpness between silicon layers and silicon/germanium composite layers, approaches have used silicon hydride gas species. The hydrogen atoms can play a role of inhibitors of silicon/germanium exchange. However, there are few kinetic models to explain the hydrogen effects. We propose using segregation probability which is affected by hydrogen atoms covering substrate surfaces. We derived the model to predict the segregation probability as well as the profile of Ge fraction through layers by using chemical reactions during silicon deposition.

Relationship between Expandability, MacEwan Crystallite Thickness, and Fundamental Particle Thickness in Illite-Smectite Mixed Layers (일라이트-스멕타이트 혼합층광물의 팽창성과 MacEwan 결정자 및 기본입자두께에 관한 연구)

  • 강일모;문희수;김재곤;송윤구
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.95-103
    • /
    • 2002
  • The object of this study was to interpret the ralationship between expandability (% $S_{XRD}$), MacEwan crystallite thickness ( $N_{CSD}$), and mean fundamental particle thickness ( $N_{F}$ ) in illite-semctite mixed layer (I-S), quantitatively. This interpretation was extracted from comparison of two structural models (MacEwan crystallite model and fundamental particle model) of I-S mixed layers. In I-S structure, % $S_{XRD}$, $N_{CSD}$, and $N_{F}$ are not independent parameters but are related to each others by particular geometric relations. % $S_{XRD}$ is dependent on $N_{CSD}$ by short-stack effect, whereas, % $S_{XRD}$ and $N_{F}$ have relation to smectite interlayer number (Ns)=( $N_{F-}$1)/(100%/% $S_{XRD-}$ $N_{F}$ . Therefore, % $S_{XRD}$ and $N_{F}$ should satisfy a specific physical condition, 1< $N_{F}$ <100%/% $S_{XRD}$, because $N_{s}$ is positive. Based on this condition, this study suggested % $S_{XRD}$ vs $N_{F}$ diagram which can be used to interpret % $S_{XRD}$, $N_{F}$ , $N_{S}$ , and ordering, quantitatively. The diagram was examined by XRD data for I-S samples from Ceumseongsan volcanic complex, Korea. I-S samples showed that $N_{F}$ departs from the physical upper-limit ( $N_{F}$ =100%/% $S_{XRD}$) with decrease in % $S_{XRD}$. This phenomenon may happen due to decrease of stacking-capability of fundamental particles with their thickening.g.s with their thickening.g.

Performance Evaluation of the Advanced Physical Layer Modulation Techniques for Cable Modem Upstream Channel (케이블모뎀 상향 채널을 위한 Advanced PHY 변조 기술 성능 평가)

  • Cho, Byung-Hak;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.1-11
    • /
    • 2005
  • S-CDMA is the advanced physical layer modulation techniques of DOCSIS 2.0 specification. S-DMT is another challenging modulation technique for cable modem upstream channel due to the intrinsic robustness for fading and impulse noise. The BER performance of S-DMT and S-CDMA over the mixed channel model of AWGN and impulse noise were evaluated in comparison with TDMA. The mathematical BER derivation and the comparison of those three types of technique were performed based on the ${\varepsilon}-mixture$ non-Gaussian impulse noise model. The results of simulation show good compliance with those of analytic BER derivation. By the results of comparisons, it was verified that the performance of S-CDMA and S-DMT is almost the same, but the performance of S-DMT is far superior to that of TDMA at typical BER range of the practical data communications.

Tracking of Yellowtail Seriola quinqueradiata Migration Using Pop-up Satellite Archival Tag (PSAT) and Oceanic Environments Data (위성전자표지와 해양환경자료를 이용한 방어(Seriola quinqueradiata) 이동경로 추적 연구)

  • Kim, Changsin;Yang, Jigwan;Kang, Sujin;Lee, Seung-Jong;Kang, Sukyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.5
    • /
    • pp.787-797
    • /
    • 2021
  • Yellowtail Seriola quinqueradiata tagged with a Pop-up Satellite Archival Tag (PSAT) was released off the coast of near the Moseulpo, Jeju Island and the ecological data during about 40 days was obtained. However, it is difficult to determine the spatial location of underwater ecological data. To improve the accuracy of estimating the Yellowtail migration route using temperature, suitable background field of the oceanic environment data was evaluated and used for input data. After developing of the tracking algorithm for migration route estimation, three experiment cases were estimated with ecological data among the surface layer, the mixed layer, and the whole water column. All tracking experiments move from western to eastern Jeju Island. Additionally, tracking experiment using 3D ocean numerical model reveal that it is possible to estimate the migration route using the fish ecological data of the entire water column. Therefore, using a large number of ecological data and a high-accuracy ocean numerical model to estimate the migration route seems to be a way to increase the accuracy of the tracking experiment. Moreover, the tracking algorithm of this study can be applied to small pelagic fishery using small archival electronic tags to track the migration route.

Mixed Mode Analysis using Two-step Extension Based VCCT in an Inclined Center Crack Repaired by Composite Patching (복합재료 팻칭에 의한 중앙경사균열에서 2단계 확장 가상균열닫힘법을 사용한 혼합모우드해석)

  • Ahn, Jae-Seok;Woo, Kwang-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.11-18
    • /
    • 2012
  • This paper deals with the numerical determination of the stress intensity factors of cracked aluminum plates under the mixed mode of $K_I$ and $K_{II}$ in glass-epoxy fiber reinforced composites. For the stress intensity factors, two different models are reviewed such as VCCT and two-step extension method. The p-convergent partial layerwise model is adopted to determine the fracture parameters in terms of energy release rates and stress intensity factors. The p-convergent approach is based on the concept of subparametric element. In assumed displacement field, strain-displacement relations and 3-D constitutive equations of a layer are obtained by combination of 2-D and 1-D higher-order shape functions. In the elements, Lobatto shape functions and Gauss-Lobatto technique are employed to interpolate displacement fields and to implement numerical quadrature. Using the models and techniques considered, effects of composite laminate configuration according to inclined angles and adhesive properties on the performance of bonded composite patch are investigated. In addition to these, the out-of-plane bending effect has been investigated across the thickness of patch repaired laminate plates due to the change of neutral axis. The present model provides accuracy and simplicity in terms of stress intensity factors, stress distribution, number of degrees of freedom, and energy release rates as compared with previous works in literatures.

FABRICATION OF TISSUE ENGINEERED MYO-MUCOSAL FLAP BY GRAFTING THE COMPLEX OF AUTOLOGOUS ORAL KERATINOCYTES AND PLATELET RICH PLASMA(PRP) IN A RAT MODEL (백서에서 자가 구강점막세포와 혈소판 농축 혈장의 이식에 의한 점막 근 피판의 조직공학적 제작)

  • Lee, Bu-Kyu;Hwang, Jin-Hyuk
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.4
    • /
    • pp.322-330
    • /
    • 2007
  • Backgrounds: To overcome limited amount of autogenous mucosa for the reconstruction of various mucosal defect including oral mucosal defect, tissue engineered mucosa has been recently introduced. However, introduced conventional technique of tissue engineered mucosa still have serious pitfalls such as long fabrication time, fragility of the reconstructed mucosa, and complexity of the technique. Aim of the study: To examine whether the complex of preconfluent autologous keratinocytes and autologous PRP(Platelet rich plasma) can reconstruct oral mucosa on the muscular flap with easier and faster way compared to conventional mucosal tissue engineering technique. Materials and methods: One day before the operation, oral mucosa(3mm in diameter) were taken and treated for extraction of oral keratinocytes according to the routine manner. The day of operation, oral keratinocytes were prepared in the laboratory and then moved to the operating theater. Autologous PRP was also prepared and then mixed with oral keratinocytes just before grafting on the prepared muscular flap. After keratinocyte-PRP complex was seated, then a sterilized rubber sheet was placed on the graft and the elevated skin flap was replaced and sutured. Biopsies were proceeded at 3, 5, 7, 14 and 21 days. Tissue samples were evaluated clinically, histologically, and immunohistochemically. Results: All of the oral keratinocyte-PRP complexes were successfully grafted on the recipient sites(100%). On 3 days after the operation, 1-2 continuous epithelial layer and many inflammatory cells were observed. On 5 days after the operation, increase of layers of keratinocyte was observed with less inflammatory response. Thickness of the layers was gradually increased from 7 to 21 days after the operation. Cytokeratin confirms epithelium in every specimen. Conclusions: Preconfluent graft of autogenous oral keratinocytes mixed with autogenous PRP have successfully reconstructed myo-mucosal flap. This technique could be a useful alternative for oral mucosal reconstruction in the near future.

Observations on the Coastal Ocean Response to Typhoon Maemi at the East Sea Real-time Ocean Buoy (동해 실시간 해양관측 부이로부터 관측한 태풍 매미에 대한 연안해양의 반응 고찰)

  • Nam, Sung-Hyun;Yun, Jae-Yul;Kim, Kuh
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.3
    • /
    • pp.111-118
    • /
    • 2004
  • An ocean buoy was deployed 10 km off Donghae city, Korea at a depth of 130 m to measure meteorological (air pressure, air temperature, wind speed, wind gust, wind direction, relative humidity) and oceanographic data (water properties and currents in the whole column) in real-time. The buoy recorded a maximum wind gust of 25 m/s (10 minutes' average speed of 20 m/s) and a minimum air pressure of 980 hPa when the eye of typhoon Maemi passed by near the Uljin city, Korea at 03:00 on 13 September 2003. The wave height reached maximum of 9 m with the significant wave height of 4 m at 04:00 (1 hour after the passage of Maemi). The currents measured near the surface reached up to about 100 cm/s at 13:00 (10 hours after the passage of Maemi). The mixed layer (high temperature and low salinity) thickness, which was accompanied by strong southward current, gradually increased from 20 m to 40 m during the 10 hours. A simple two layer model for the response to an impulsive alongshore wind over an uniformly sloping bottom developed by Csanady (1984) showed reasonable estimates of alongshore and offshore currents and interface displacement for the condition of typhoon Maemi at the buoy position (x=8.15 km) during the 10 hours.

Effect of the Bottom Slope on the Formation of Coastal Front and Shallow-Sea Structure during Cold-Air Outbreak

  • Cheong, Hyeong-Bin;Kim, Young-Seup;Hong, Sung-Keun;Cheong, Hyeong-Bin
    • Journal of the korean society of oceanography
    • /
    • v.32 no.3
    • /
    • pp.93-102
    • /
    • 1997
  • Coastal circulations during the (surface condition of an) idealized cold-air outbreak are numerically investigated with two-dimensional, non-hydrostatic model in which a constant bottom-slope exists. The atmospheric forcing during a cold-air outbreak is incorporated as the surface cooling and the wind stress. When the offshore angle of the wind-stress vector, defined as the angle measured from the alongshore axis, is smaller than 45 degrees, a strong downwelling circulation develops near the coast. A sharp density front, which separates the vertically homogeneous region from the offshore stratified region, is formed near the coast and propagates offshore with time. Onshore side of the density front, small-scale circulation cells which are aligned in the direction perpendicular to the bottom begin to develop as the near-coast homogeneous region broadens. The surface cooling enhances greatly the development of the surface mixed layer by convective motions due to hydrostatic instability. The convective motions reach far below the hydrostatically unstable layer which is attached to the surface. The small-scale circulation cells are appreciably modified by the convetion cell and the density front develops far offshore compared to the case of no surface cooling. As to the effect of the bottom slope, the offshore distance of the density front increases (decreases) as the bottom slope decreases (increases), which results from the fact that the onshore volume-transport (Ekman transport) of the low-density upper seawater remains almost constant when the wind-stress is maintained constant. It is shown that the bottom slope is an essential factor for the formation of both the density front and the alongshore current when the surface cooling is the only forcing.

  • PDF

Electrical Conduction Mechanism in the Insulating TaNx Film (절연성 TaNx 박막의 전기전도 기구)

  • Ryu, Sungyeon;Choi, Byung Joon
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.32-38
    • /
    • 2017
  • Insulating $TaN_x$ films were grown by plasma enhanced atomic layer deposition using butylimido tris dimethylamido tantalum and $N_2+H_2$ mixed gas as metalorganic source and reactance gas, respectively. Crossbar devices having a $Pt/TaN_x/Pt$ stack were fabricated and their electrical properties were examined. The crossbar devices exhibited temperature-dependent nonlinear I (current) - V (voltage) characteristics in the temperature range of 90-300 K. Various electrical conduction mechanisms were adopted to understand the governing electrical conduction mechanism in the device. Among them, the PooleFrenkel emission model, which uses a bulk-limited conduction mechanism, may successfully fit with the I - V characteristics of the devices with 5- and 18-nm-thick $TaN_x$ films. Values of ~0.4 eV of trap energy and ~20 of dielectric constant were extracted from the fitting. These results can be well explained by the amorphous micro-structure and point defects, such as oxygen substitution ($O_N$) and interstitial nitrogen ($N_i$) in the $TaN_x$ films, which were revealed by transmission electron microscopy and UV-Visible spectroscopy. The nonlinear conduction characteristics of $TaN_x$ film can make this film useful as a selector device for a crossbar array of a resistive switching random access memory or a synaptic device.

Numerical Analysis for the Characteristic Investigation of Homogenization Techniques Used for Equivalent Material Properties of Functionally Graded Material (기능경사 소재 등가 물성치 예측을 위한 균질화 기법의 특성분석을 위한 수치해석)

  • Cho, Jin-Rae;Choi, Joo-Hyoung;Shin, Dae-Sub
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • Graded layers in which two different constituent particles are mixed are inserted into functionally graded material such that the volume fractions of constituent particles vary continuously and functionally over the entire material domain. The material properties of this dual-phase graded region, which is essential for the numerical analysis of the thermo-mechanical behavior of FGM, have been predicted by traditional homogenization methods. But, these methods are limited to predict the global equivalent material properties of FGMs because the detailed geometry information such as the particel shape and the dispersion structure is not considered. In this context, this study intends to investigate the characteristics of these homogenization methods through the finite element analysis utilizing the discrete micromechanics models of the graded layer, for various volume fractions and external loading conditions.