• Title/Summary/Keyword: mixed-integer programming

Search Result 389, Processing Time 0.022 seconds

A Study on the Integrated Production-Inventory Model Under Quantity Discount (수량할인하(數量割引下)의 통합생산재고(統合生産在庫)모델에 관(關)한 연구(硏究))

  • Han, Yeong-Seop;Lee, Sang-Yong
    • Journal of Korean Society for Quality Management
    • /
    • v.16 no.1
    • /
    • pp.78-87
    • /
    • 1988
  • The purpose of this study is to develop the algorithm applicable to the integrated production inventory model under quantity discount. To achieve this purpose, the integrated production inventory model which unifies the inventory problem of raw materials and the finished product for a single product manufacturing system is considered. The product is manufactured in batches and the raw materials are obtained from outside suppliers but some of the raw materials are discounted according to the purchasing quantity. The intergrated production inventory problem considered in this study is formulated by the non-linear mixed integer programming model, and the optimal solution is obtained by using the algorithm developed by Goyal. Then, the algorithm developed by this study is applied to the quantity discount problem, and the optimal solution is revised by this results. The quantity discount algorithm of the integrated production inventory model developed by this study gives a systematic procedure to obtain the optimum policy to minimize the total cost in any case. The numerical example involving 20 raw materials and 5 raw materials among them are discounted according to the purchasing quantity is given to verify the mathematical model and the algorithm developed in this study.

  • PDF

Development of A System Optimum Traffic Control Strategy with Cell Transmission Model (Cell Transmission 이론에 근거한 시스템최적 신호시간산정)

  • 이광훈;신성일
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.5
    • /
    • pp.193-206
    • /
    • 2002
  • A signal optimization model is proposed by applying the Cell-Transmission Model(CTM) as an embedded traffic flow model to estimate a system-optimal signal timing plan in a transportation network composed of signalized intersections. Beyond the existing signal-optimization models, the CTM provides appropriate theoretical and practical backgrounds to simulate oversaturation phenomena such as shockwave, queue length, and spillback. The model is formulated on the Mixed-Integer Programming(MIP) theory. The proposed model implies a system-optimal in a sense that traffic demand and signal system cooperate to minimize the traffic network cost: the demand departing from origins through route choice behavior until arriving at destinations and the signal system by calculating optimal signal timings considering the movement of these demand. The potential of model's practical application is demonstrated through a comparison study of two signal control strategies: optimal and fixed signal controls.

A New Techno-Economic Modeling and Analysis for FTTH Optical Access Networks (광 가입자 망 진화를 위한 기술 경제성 평가)

  • Lee, Young-Ho;Hahm, Tae-Hoon;Kim, Young-Jin;Han, Jung-Hee
    • IE interfaces
    • /
    • v.18 no.3
    • /
    • pp.277-287
    • /
    • 2005
  • In this paper, we deal with a new techno-economic modeling and analysis for optical access networks. In deploying the fiber-to-the-home (FTTH) architecture, network planner needs to consider the following techno-economic issues: when do we need to upgrade existing local access network to FTTH network? how much do we invest to maximize profit? In order to answer these techno-economic questions, we need to consider the impact of emerging technologies and business environment. Toward this end, we develop a new techno-economic modeling to deal with the inherent complexity of technology evolution and cost economics. In particular, the new modeling approach provides us with an techno-economic analysis of technology alternatives such as ethernet passive optical network (E-PON) and wavelength division multiplex passive optical network (WDM-PON). In this analysis, we focus on the impact of critical factors such as the cost characteristic of proposed architecture and digital subscriber line (DSL) subscriber's churn-in to FTTH service and churn-out. We develop mixed integer-programming models for finding the evolution path of local access networks to broadband network architectures.

A Multi-Objective Differential Evolution for Just-In-Time Door Assignment and Truck Scheduling in Multi-door Cross Docking Problems

  • Wisittipanich, Warisa;Hengmeechai, Piya
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.3
    • /
    • pp.299-311
    • /
    • 2015
  • Nowadays, the distribution centres aim to reduce costs by reducing inventory and timely shipment. Cross docking is a logistics strategy in which products delivered to a distribution centre by inbound trucks are directly unloaded and transferred to outbound trucks with minimum warehouse storage. Moreover, on-time delivery in a distribution network becomes very crucial especially when several distribution centres and customers are involved. Therefore, an efficient truck scheduling is needed to synchronize the delivery throughout the network in order to satisfy all stake-holders. This paper presents a mathematical model of a mixed integer programming for door assignment and truck scheduling in a multiple inbound and outbound doors cross docking problem according to Just-In-Time concept. The objective is to find the schedule of transhipment operations to simultaneously minimize the total earliness and total tardiness of trucks. Then, a multi-objective differential evolution (MODE) is proposed with an encoding scheme and four decoding strategies, called ITSH, ITDD, OTSH and OTDD, to find a Pareto frontier for the multi-door cross docking problems. The performances of MODE are evaluated using 15 generated instances. The numerical experiments demonstrate that the proposed algorithm is capable of finding a set of diverse and high quality non-dominated solutions.

An Adaptive Genetic Algorithm for a Dynamic Lot-sizing and Dispatching Problem with Multiple Vehicle Types and Delivery Time Windows (다종의 차량과 납품시간창을 고려한 동적 로트크기 결정 및 디스패칭 문제를 위한 자율유전알고리즘)

  • Kim, Byung-Soo;Lee, Woon-Seek
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.4
    • /
    • pp.331-341
    • /
    • 2011
  • This paper considers an inbound lot-sizing and outbound dispatching problem for a single product in a thirdparty logistics (3PL) distribution center. Demands are dynamic and finite over the discrete time horizon, and moreover, each demand has a delivery time window which is the time interval with the dates between the earliest and the latest delivery dates All the product amounts must be delivered to the customer in the time window. Ordered products are shipped by multiple vehicle types and the freight cost is proportional to the vehicle-types and the number of vehicles used. First, we formulate a mixed integer programming model. Since it is difficult to solve the model as the size of real problem being very large, we design a conventional genetic algorithm with a local search heuristic (HGA) and an improved genetic algorithm called adaptive genetic algorithm (AGA). AGA spontaneously adjusts crossover and mutation rate depending upon the status of current population. Finally, we conduct some computational experiments to evaluate the performance of AGA with HGA.

Efficient Peer Assignment for Low-Latency Transmission of Scalable Coded Images

  • Su, Xiao;Wang, Tao
    • Journal of Communications and Networks
    • /
    • v.10 no.1
    • /
    • pp.79-88
    • /
    • 2008
  • In this paper, we propose efficient peer assignment algorithms for low-latency transmission of scalable coded images in peer-to-peer networks, in which peers may dynamically join and leave the networks. The objective of our algorithm is to minimize the transmission time of a requested image that is scalable coded. When an image is scalable coded in different bit rates, the bit stream encoded in a lower bit rate is a prefix subset of the one encoded in a higher bit rate. Therefore, a peer with the same requested image coded in any bit rate, even when it is different from the requested rate, may work as a supplying peer. As a result, when a scalable coded image is requested, more supplying peers can be found in peer-to-peer networks to help with the transfer. However, the set of supplying peers is not static during transmission, as the peers in this set may leave the network or finish their transmission at different times. The proposed peer assignment algorithms have taken into account the above constraints. In this paper, we first prove the existence of an optimal peer assignment solution for a simple identity permutation function, and then formulate peer assignment with this identity permutation as a mixed-integer programming problem. Next, we discuss how to address the problem of dynamic peer departures during image transmission. Finally, we carry out experiments to evaluate the performance of proposed peer assignment algorithms.

An energy-efficiency approach for bidirectional amplified-and-forward relaying with asymmetric traffic in OFDM systems

  • Jia, Nianlong;Feng, Wenjiang;Zhong, Yuanchang;Kang, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4087-4102
    • /
    • 2014
  • Two-way relaying is an effective way of improving system spectral efficiency by making use of physical layer network coding. However, energy efficiency in OFDM-based bidirectional relaying with asymmetric traffic requirement has not been investigated. In this study, we focused on subcarrier transmission mode selection, bit loading, and power allocation in a multicarrier single amplified-and-forward relay system. In this scheme, each subcarrier can operate in two transmission modes: one-way relaying and two-way relaying. The problem is formulated as a mixed integer programming problem. We adopt a structural approximation optimization method that first decouples the original problem into two suboptimal problems with fixed subcarrier subsets and then finds the optimal subcarrier assignment subsets. Although the suboptimal problems are nonconvex, the results obtained for a single-tone system are used to transform them to convex problems. To find the optimal subcarrier assignment subsets, an iterative algorithm based on subcarrier ranking and matching is developed. Simulation results show that the proposed method can improve system performance compared with conventional methods. Some interesting insights are also obtained via simulation.

Model and Algorithm for Logistics Network Integrating Forward and Reverse Flows (역물류를 고려한 통합 물류망 구축에 대한 모델 및 해법에 관한 연구)

  • Ko Hyun Jeung;Ko Chang Seong;Chung Ki Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.375-388
    • /
    • 2004
  • As today's business environment has become more and more competitive, forward as well as backward flows of products among members belonging to a supply chain have been increased. The backward flows of products, which are common in most industries, result from increasing amount of products that are returned, recalled, or need to be repaired. Effective management for these backward flows of products has become an important issue for businesses because of opportunities for simultaneously enhancing profitability and customer satisfaction from returned products. Since third party logistics service providers (3PLs) are playing an important role in reverse logistics operations, the 3PLs should perform two simultaneous logistics operations for a number of different clients who want to improve their logistics operations for both forward and reverse flows. In this case, distribution networks have been independently designed with respect to either forward or backward flows so far. This paper proposes a mixed integer programming model for the design of network integrating both forward and reverse logistics. Since this network design problem belongs to a class of NP-hard problems, we present an efficient heuristic based on Lagrangean relaxation and apply it to numerical examples to test the validity of proposed heuristic.

  • PDF

Common Due-Date Assignment and Scheduling on Parallel Machines with Sequence-Dependent Setup Times

  • Kim, Jun-Gyu;Yu, Jae-Min;Lee, Dong-Ho
    • Management Science and Financial Engineering
    • /
    • v.19 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • This paper considers common due-date assignment and scheduling on parallel machines. The main decisions are: (a) deter-mining the common due-date; (b) allocating jobs to machines; and (c) sequencing the jobs assigned to each machine. The objective is to minimize the sum of the penalties associated with common due-date assignment, earliness and tardiness. As an extension of the existing studies on the problem, we consider sequence-dependent setup times that depend on the type of job just completed and on the job to be processed. The sequence-dependent setups, commonly found in various manufacturing systems, make the problem much more complicated. To represent the problem more clearly, a mixed integer programming model is suggested, and due to the complexity of the problem, two heuristics, one with individual sequence-dependent setup times and the other with aggregated sequence-dependent setup times, are suggested after analyzing the characteristics of the problem. Computational experiments were done on a number of test instances and the results are reported.

An Economic Assessment of Large-scale Battery Energy Storage Systems in the Energy-Shift Application to Korea Power System (장주기 대용량 전력저장장치의 부하이전에 대한 실계통 적용 경제성 평가 연구)

  • Park, Jong-Bae;Park, Yong-Gi;Roh, Jae-Hyung;Chang, Byung-Hoon;Toon, Yong-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.384-392
    • /
    • 2015
  • This paper presents an economic assessment of large-scale Li-ion battery energy storage systems applied to Korean power system. There are many applications of the battery energy storage systems (BESSs) and they can provide various benefits to power systems. We consider BESSs to the energy time-shift application to Korean power system and evaluate the benefits from the application of BESS in the social perspective. The mixed integer programming (MIP) algorithm is used to resolve the optimal operation schedule of the BESS. The social benefits can include the savings of the fuel cost from generating units, deferral effects of the generation capacity, delay of transmission and distribution infra construction, and incremental CO2 emission cost impacts, etc. The economic evaluation of the BESS is separately applied into Korean power systems of the Main-land and Jeju island to reflect the differences of the load and generation patterns.