• Title/Summary/Keyword: mixed power

Search Result 1,147, Processing Time 0.025 seconds

Adequate Excessive Air Ratio for The Various Blended Coal at a USC Boiler (USC 보일러에서 혼합연료별 적정과잉공기비)

  • Park, Jin-Chul;Lee, Jae-Heon;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.7 no.2
    • /
    • pp.44-51
    • /
    • 2011
  • Given the fact that the entire bituminous coal used for a boiler is imported, the supply of coal is often affected by the rise of international coal price. Moreover, coal suppliers have been diversified due to the competition among power generation companies for reducing costs and inexpensive sub-bituminous coal is used. As a result, boilers combustion conditions have been deviated from the initial boiler design. This requires the selection of adequate excessive air ratio for different combustion conditions to enhance the efficiency of boiler operation. The boiler efficiency has been identified through an examination on the change of excessive air ratio by mixed fuel in unit 8 of Dangjin power plant complex. In addition, an excessive air ratio was calculated based on the examination result. According to the study result, the adequate excessive air ratio was 13% when Macquarie and Powder river were mixed at a ratio of 5:5 and when Sonoma and Megaprima persada were mixed at a ratio of 5:5. When BHP Billiton and Powder river were mixed at a ratio of 4:6 and Centennial and Batubara were mixed at a ratio of 3:7, the adequate excessive air ratio was 11%.

  • PDF

Fast Mixed-Integer AC Optimal Power Flow Based on the Outer Approximation Method

  • Lee, Sungwoo;Kim, Hyoungtae;Kim, Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2187-2195
    • /
    • 2017
  • In order to solve the AC optimal power flow (OPF) problem considering the generators' on/off status, it is necessary to model the problem as mixed-integer nonlinear programming (MINLP). Because the computation time to find the optimal solution to the mixed-integer AC OPF problem increases significantly as the system becomes larger, most of the existing solutions simplify the problem either by deciding the on/off status of generators using a separate unit commitment algorithm or by ignoring the minimum output of the generators. Even though this kind of simplification may make the overall computation time tractable, the results can be significantly erroneous. This paper proposes a novel algorithm for the mixed-integer AC OPF problem, which can provide a near-optimal solution quickly and efficiently. The proposed method is based on a combination of the outer approximation method and the relaxed AC OPF theory. The method is applied to a real-scale power system that has 457 generators and 2132 buses, and the result is compared to the branch-and-bound (B&B) method and the genetic algorithm. The results of the proposed method are almost identical to those of the compared methods, but computation time is significantly shorter.

Design of Robust Load Frequency Controller using Mixed Sensitivity based $H_{\infty}$ norm (혼합강도 $H_{\infty}$ 제어기법을 이용한 강인한 부하주파수 제어기 설계)

  • 정형환;김상효;이정필;한길만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.88-98
    • /
    • 2000
  • In this paper, a robust controller using $H_{\infty}$ control theory has been designed for the load frequency control of interconnected 2-area power system. The main advantage of the proposed $H_{\infty}$ controller is that uncertainties of power system can be included at the stage of controller design. Representation of uncertainties is modeled by multiplicative uncertainly. In the mixed sensitivity problems, disturbance attenuation and uncertainty of the system is treated simultaneously. The robust stability and the performance of model uncertainties are represented by frequency weighted transfer function. The design of load frequency controller for each area was based on state-space approach. The comparative computer simulation results for the proposed controller and the conventional techniques such as the optimal control and the PID one were analyzed at the additions of various disturbances. Their deviation magnitude of frequency and tie line power flow at each area were mainly evaluated. Also the testing results of robustness for the cases that the perturbations of the all parameters of power system were amounted to about 20% were introduced. It was approved that the resultant performances of the proposed $H_{\infty}$ controller with mixed sensitivity were more robust and stable than the one of conventional controllers.

  • PDF

Robust power control design for a small pressurized water reactor using an H infinity mixed sensitivity method

  • Yan, Xu;Wang, Pengfei;Qing, Junyan;Wu, Shifa;Zhao, Fuyu
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1443-1451
    • /
    • 2020
  • The objective of this study is to design a robust power control system for a small pressurized water reactor (PWR) to achieve stable power operations under conditions of external disturbances and internal model uncertainties. For this purpose, the multiple-input multiple-output transfer function models of the reactor core at five power levels are derived from point reactor kinetics equations and the Mann's thermodynamic model. Using the transfer function models, five local reactor power controllers are designed using an H infinity (H) mixed sensitivity method to minimize the core power disturbance under various uncertainties at the five power levels, respectively. Then a multimodel approach with triangular membership functions is employed to integrate the five local controllers into a multimodel robust control system that is applicable for the entire power range. The performance of the robust power system is assessed against 10% of full power (FP) step load increase transients with coolant inlet temperature disturbances at different power levels and large-scope, rapid ramp load change transient. The simulation results show that the robust control system could maintain satisfactory control performance and good robustness of the reactor under external disturbances and internal model uncertainties, demonstrating the effective of the robust power control design.

Voltage Control and Security Assessment of Power System Using Mixed Integer Linear Programming (혼합정수 선형계획법을 이용한 계통의 전압제어 및 안전도 평가)

  • 김두현;김상철
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.2
    • /
    • pp.70-76
    • /
    • 1999
  • In this paper, a mixed-integer programming approach is presented for adjusting the voltage profiles in a power system. The advent of large-scaled system makes the reactive power and voltage problem-an attempt to achieve an overall improvement of system security, service quality and economy-more complex and seriously, Although the problem is originally a nonlinear optimization problem, it can be formulated as a mixed integer linear programming(MILP) problem without deteriorating of solution accuracy to a certain extent. The MILP code is developed by the branch and bound process search for the optimal solution. The variable for modeling transformer tap positions is handled as discrete one, and other variables continuous ones. Numerical data resulting from case study using a modified IEEE 30 bus system with outaged line show that the MILP can produce more reductions of magnitude in the operating cost. The convergence characteristics of the results are also presented and discussed.

  • PDF

Calculation of Mixed Lubrication at Piston Ring and Cylinder Liner Interface

  • Cho, Myung-Rae;Park, Jae-Kwon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.859-865
    • /
    • 2001
  • This paper reports on the theoretical analysis of mixed lubrication for the piston ring. The analytical model is presented by using the average flow and asperity contact model. The cyclic variations of the nominal minimum oil film thickness are obtained by numerical iterative method. The total friction is calculated by using the hydrodynamic and asperity contact theory. The effect of the roughness height, pattern, and engine speed on the nominal minimum film thickness, friction force, ad frictional power losses are investigated. As the roughness height increases, the nominal oil film thickness and total friction force increase. Also, the effect of the surface roughness on the boundary friction is dominant at low engine speed and high asperity height. The longitudinal roughness pattern shows lower mean oil film pressure and thinner oil film thickness compared to the case of the isotropic and transverse roughness patterns.

  • PDF

A Study of Choice for Analysis Method on Repeated Measures Clinical Data

  • Song, Jung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.45 no.2
    • /
    • pp.60-65
    • /
    • 2013
  • Data from repeated measurements are accomplished through repeatedly processing the same subject under different conditions and different points of view. The power of testing enhances the choice of pertinent analysis methods that agrees with the characteristics of data concerned and the situation involved. Along with the clinical example, this paper compares the analysis of the variance on ex-post tests, gain score analysis, analysis by mixed design and analysis of covariance employable for repeating measure. Comparing the analysis of variance on ex post test, and gain score analysis on correlations, leads to the fact that the latter enhances the power of the test and diminishes the variance of error terms. The concluded probability, identified that the gain score analysis and the mixed design on interaction between "between subjects factor" and "within subjects factor", are identical. The analysis of covariance, demonstrated better power of the test and smaller error terms than the gain score analysis. Research on four analysis method found that the analysis of covariance is the most appropriate in clinical data than two repeated test with high correlation and ex ante affects ex post.

  • PDF

Mixed-Mode Simulation of the Power MOSFET with Current Limiting Capability (전류 제한 능력을 갖는 전력용 MOSFET의 Mixed-Mode 시뮬레이션)

  • Yun, Chong-Man;Choi, Yearn-Ik;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1451-1453
    • /
    • 1994
  • A monolithic current limiting power MOSFET, which may be easily fabricated by the conventional DMOS process, is proposed. The proposed current limiting MOSFET consists of main power cells, sensing cells, and NPN lateral bipolar transistor so that users can adjust the current limiting levels with only one external resistor. The behaviors of the proposed device are numerically simulated and analyzed by 2-D device simulator MEDICI and mixed-mode simulator CA-AAM(Circuit Analysis Advanced Application Module).

  • PDF

Selective Laser Sintering of Cu/Polyamide Mixed Powder (Cu/Polyamide 혼합분말의 선택적 레이저 소결)

  • 박흥일;이길근
    • Journal of Powder Materials
    • /
    • v.8 no.4
    • /
    • pp.239-244
    • /
    • 2001
  • To investigate the effect of process parameters on selective laser sintering of Cu/polyamide mixed powder, Cu/polyamide mixed powder was sintered by selective laser with changing laser power and scanning speed. The properties of sintered body were evaluated by measuring the density and tensile strength, and analysis of XRD, FT-Raman and microstructure. With an increase in the laser power, the density and ultimate tensile strength of sintered Cu/polyamide body increase and then decrease. The maximum values of the density and ultimate tensile strength were decreased with increasing laser scanning speed. These changes were concerned with the difference of irradiation energy of laser into the powder layer. It was considered that the change of the mechanical property of the sintered body with irradiation energy of laser is due to the changes of amount of copper particle and property of polyamide.

  • PDF

Statistical analysis on the fluence factor of surveillance test data of Korean nuclear power plants

  • Lee, Gyeong-Geun;Kim, Min-Chul;Yoon, Ji-Hyun;Lee, Bong-Sang;Lim, Sangyeob;Kwon, Junhyun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.760-768
    • /
    • 2017
  • The transition temperature shift (TTS) of the reactor pressure vessel materials is an important factor that determines the lifetime of a nuclear power plant. The prediction of the TTS at the end of a plant's lifespan is calculated based on the equation of Regulatory Guide 1.99 revision 2 (RG1.99/2) from the US. The fluence factor in the equation was expressed as a power function, and the exponent value was determined by the early surveillance data in the US. Recently, an advanced approach to estimate the TTS was proposed in various countries for nuclear power plants, and Korea is considering the development of a new TTS model. In this study, the TTS trend of the Korean surveillance test results was analyzed using a nonlinear regression model and a mixed-effect model based on the power function. The nonlinear regression model yielded a similar exponent as the power function in the fluence compared with RG1.99/2. The mixed-effect model had a higher value of the exponent and showed superior goodness of fit compared with the nonlinear regression model. Compared with RG1.99/2 and RG1.99/3, the mixed-effect model provided a more accurate prediction of the TTS.