• Title/Summary/Keyword: mixed oxide catalysts

Search Result 54, Processing Time 0.026 seconds

Direct Methanol Synthesis by Partial Oxidation of Methane (메탄의 부분산화에 의한 메탄올 직접 합성)

  • Kim, Young-Kook;Lee, Kwang-Hyeok;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.649-655
    • /
    • 2013
  • Methanol was directly produced by the partial oxidation of methane with perovskite and mixed oxide catalysts. Perovskite ($ABO_3$) catalysts were prepared by the malic acid method with changing A and B site components. Three-component mixed oxide catalysts that have Mo and Bi as a main component were prepared by the co-precipitation method. Among the perovskite catalysts, $SrCrO_3$ showed the highest methanol selectivity of 11% at $400^{\circ}C$. For the three-component mixed oxide catalysts, there were no remarkable changes in methane conversion. Among the mixed oxide catalysts, Mo-Bi-Cr mixed oxide catalyst showed the highest methanol selectivity of 15.3% at $400^{\circ}C$. The catalytic activity and methanol selectivity of the three-component mixed oxide catalysts were directly proportional to the surface area of the catalysts.

The Effects of binary metal oxide catalysts for the synthesis of glycerol carbonate (이원계 금속산화물 촉매가 글리세롤카보네이트 합성에 미치는 영향)

  • Baek, Jae-Ho;Moon, Myung-Jun;Lee, Man-Sig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.456-461
    • /
    • 2012
  • The glycerol carbonate was synthesized by glycerol and urea using metal oxide catalysts. The physical properties of the prepared metal oxide catalysts were investigated by X-ray diffraction (XRD), specific surface area analysis (BET), field emission scanning electron microscopy (FE-SEM) and temperature programmed desorption (TPD). In addition, we confirmed the conversion of the glycerol and the yield of the glycerol carbonate according to characteristics of metal oxide catalysts. From XRD and FE-SEM analysis, the crystallite size and crystallinity of metal oxide catalysts decrease with addition of Al. In addition, the Zn-Al mixed metal oxide had higher catalytic activity than the pure ZnO due to decreased side reaction in the synthesis of glycerol carbonate.

Direct Methanol Synthesis by Partial Oxidation of Methane over Four-component Mixed Oxide Catalysts (4성분계 복합 산화물 촉매 이용 메탄의 부분산화에 의한 메탄올 직접 합성)

  • Kim, Young-Kook;Lee, Kwang-Hyeok;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.446-452
    • /
    • 2014
  • Methanol was directly produced by the partial oxidation of methane with four-component mixed oxide catalysts. Four-component(Mo-Bi-Cr-Si) mixed oxide catalysts were prepared by the co-precipitation and sol-gel methods. The catalyst prepared by the sol-gel method showed about eleven times higher surface area than that prepared by the co-precipitation method. From the $O_2$-TPD experiment of the prepared catalysts, it was proven that there exists two types of oxygen species, and the oxygen species that participates in the partial oxidation reaction is the lattice oxygen desorbing around $750^{\circ}C$. The optimum reaction condition for methanol production was $420^{\circ}C$, 50 bar, flow rate of 115 mL/min, and $CH_4/O_2$ ratio of 10/1.5, providing methane conversion and methanol selectivity of 3.2 and 26.7%, respectively.

Preparation of Mo-Bi-V-Al Mixed Oxide Catalysts and Its Application to Methanol Synthesis by Partial Oxidation of Methane (Mo-Bi-V-Al 복합 산화물 촉매의 제조와 메탄 부분산화에 의한 메탄올 합성반응에 응용)

  • Park, Eun-Seok;Shin, Ki-Seok;Ahn, Sung-Hwan;Hahm, Hyun-Sik
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.41-49
    • /
    • 2012
  • This study was aimed at the development of catalysts for the direct methanol synthesis by partial oxidation of methane. Mo-Bi-V-Al mixed oxide catalysts were prepared and characterized and used in the direct methanol synthesis reaction. The catalysts prepared by the sol-gel method had much larger surface areas than those prepared by the co-precipitation method. The larger the surface area was, the less the methanol selectivity was. The catalysts having larger surface area facilitate the complete oxidation of methane, decreasing the selectivity of methanol. The catalysts prepared by the sol-gel method showed higher methanol selectivity of 13% at $20^{\circ}C$ lower temperature than those prepared by the co-precipitation method. Through XRD analysis, it was revealed that the structures of the catalysts prepared by the two methods were different. In the reaction, methanol selectivity increased and carbon dioxide selectivity decreased with pressure due to the suppression of complete oxidation reaction at a high pressure.

Synthesis of Methanol and Formaldehyde by Partial Oxidation of Methane over Mixed Oxide Catalysts (복합산화물 촉매 상에서 메탄의 부분산화에 의한 메탄올 및 포름알데히드의 합성)

  • Hahm, Hyun-Sik;Shin, Ki-Seok;Ahn, Sung-Hwan;Kim, Song-Hyoung;Hong, Seok-Young;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.223-229
    • /
    • 2006
  • Methanol and formaldehyde were produced directly by the partial oxidation of methane over mixed oxide catalysts. The catalysts were composed of Mo and Bi with late-transition metals, such as Mn, Fe, and Co. The reaction was carried out at $450^{\circ}C$, 50 bar in a fixed-bed differential reactor. The prepared catalysts were characterized by $O_2-TPD$ and BET apparatus. Among the catalysts used, the catalyst composed of 1:1:2.5 molar ratio of Mo:Bi:Mn showed the best methane conversion and methanol selectivity. The change in ratio of methane to oxygen affected at the conversion and selectivity, and the most proper ratio was 10:1.5. Methane conversion, methanol and formaldehyde selectivities increased with the surface areas of the catalysts. From the $O_2-TPD$ result, it was found that the oxygen species responsible for this reaction might be the lattice oxygen species desorbed at high temperature around $800^{\circ}C$.

Comparative Reaction Characteristics of Methane Selective Catalytic Reduction with CO Generation Effect in the N2O Decomposition over Mixed Metal Oxide Catalysts (MMO 촉매 하에서 N2O 분해에 대한 메탄 SCR 반응 및 CO 생성 효과의 비교 연구)

  • Park, Sun Joo;Park, Yong Sung
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.624-628
    • /
    • 2008
  • Nitrous oxide ($N_2O$), known as one of the major greenhouse gases, is an important component of the earth's atmosphere, and gives rise to precursor of acid rain and photochemical smog. For the removal of $N_2O$ and other nitrogen oxides, the SCR reaction system with various reductants is widely used. This study is based on the results of experimental and theoretical examinations on the catalytic decomposition of sole nitrous oxide ($N_2O$) and selective catalytic reduction of $N_2O$ with $CH_4$ in the presence of oxygen using mixed metal oxide catalysts obtained from hydrolatcite-type precursors. When $CH_4$ is fed together with a reductant, it affects positively on the $N_2O$ decomposition activity. At an optimum ratio of $CH_4$ to $O_2$ mole ratio, the $N_2O$ conversion activity is enhanced on the SCR reaction with partial oxidation of methane.

Effect of Cerium loading on Stability of Ni-bimetallic/ZrO2 Mixed Oxide Catalysts for CO Methanation to Produce Natural Gas

  • Bhavani, Annabathini Geetha;Youn, Hyunki
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.269-274
    • /
    • 2018
  • All the $Ni-Co-Ce-ZrO_2$ mixed oxides are prepared by co-precipitations methods. Methanation of CO and $H_2$ reaction is screened tested over different fractions of cerium (2, 4, 7 and 12 wt.%) over $Ni-Co/ZrO_2$ bimetallic catalysts are investigated. The mixed oxides are characterized by XRD, CO-Chemisorption, TGA and screened methanation of CO and $H_2$ at $360^{\circ}C$ for 3000 min on stream at typical ratio $CO:H_2=1:1$. In $Ni-Co/CeZrO_2$ series 2 wt.% Ce loading catalyst shows most promising catalyst for $CH_4$ selectivity than $CO_2$, which directs more stability with less coke formation. The high activity is attributed to the better bimetallic synergy and the well-developed crystalline phases of NiO, $ZrO_2$ and $Ce-ZrO_2$. Other bimetallic mixed oxides NCoZ, $NCoC^{4-12}Z$ has faster deactivation with low methanation activity. Finally, 2 wt.% Ce loading catalyst was found to be optimal coke resistant catalyst.

Characterization of Vanadium Oxide Supported on $TiO_2-ZrO_2$ Catalysts by $^{51}V$ Solid-State NMR Spectroscopy

  • Park, Eun-Hee;Lee, Sung-Won;Lee, Man-Ho
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.4 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • Supported vanadium oxides are being used extensively as catalysts for a variety of reactions, including partial oxidations and ammoxidations. A series of vanadium oxide supported on TiO2-ZrO2 was obtained by impregnating ammonium metavanadate slowly into a mixed precipitateof Ti(OH)4-Zr(OH)4, followed by calcining in air at high temperatures. The prepared catalysts were characterized by 51V solid-state NMR. In the calcined catalysts 51V NMR studies indicated the peaks corresponding to distorted tetrahedral vanadia species at low V2O5 contents and octahedral vanadia species at high vanadia loadings. These results illustrate the suitability of 51V NMR as a unique quantitative spectroscopic tool in the structural analysis of vanadium(V) oxide catalytic materials.

  • PDF

Adsorption-Desorption Characteristics of NO, $N_2O$ and $O_2$ over Mixed Oxide Catalysts of AlCoPd (1/1/0.05) and AlCoFe (1/1/2) (AICoPd (1/1/0.05) 및 AICoFe (1/1/2)의 혼합금속산화물 촉매에 의한 NO, $N_2O$$O_2$의 흡탈착 특성 연구)

  • Han, A-Reum;Hwang, Young-Ae;Chang, Kil-Sang
    • Clean Technology
    • /
    • v.17 no.2
    • /
    • pp.142-149
    • /
    • 2011
  • The adsorption and desorption behaviors of NO and $N_2O$ over two mixed oxide catalysts, AlCoPd (1/1/0.05) and AlCoFe (1/1/2), have been investigated for the lean $NO_x$ trap applications. The catalysts showed good adsorption capabilities for NO and $N_2O$ without needing oxidation step. The adsorption decreased a lot when they are co-adsorbed with oxygen. While NO kept high adsorbability and selectivity with respect to oxygen, those of $N_2O$ decreased sharply. From the TPD results, NO and $N_2O$ are considered to decompose into nitrogen and oxygen in the higher temperature range and the oxygen seems to be strongly attached to the catalysts even at high temperature.