DOI QR코드

DOI QR Code

Preparation of Mo-Bi-V-Al Mixed Oxide Catalysts and Its Application to Methanol Synthesis by Partial Oxidation of Methane

Mo-Bi-V-Al 복합 산화물 촉매의 제조와 메탄 부분산화에 의한 메탄올 합성반응에 응용

  • Park, Eun-Seok (Department of Chemical Engineering, Myongji University) ;
  • Shin, Ki-Seok (Department of Chemical Engineering, Myongji University) ;
  • Ahn, Sung-Hwan (Department of Chemical Engineering, Myongji University) ;
  • Hahm, Hyun-Sik (Department of Chemical Engineering, Myongji University)
  • Received : 2011.08.15
  • Accepted : 2011.09.29
  • Published : 2012.02.01

Abstract

This study was aimed at the development of catalysts for the direct methanol synthesis by partial oxidation of methane. Mo-Bi-V-Al mixed oxide catalysts were prepared and characterized and used in the direct methanol synthesis reaction. The catalysts prepared by the sol-gel method had much larger surface areas than those prepared by the co-precipitation method. The larger the surface area was, the less the methanol selectivity was. The catalysts having larger surface area facilitate the complete oxidation of methane, decreasing the selectivity of methanol. The catalysts prepared by the sol-gel method showed higher methanol selectivity of 13% at $20^{\circ}C$ lower temperature than those prepared by the co-precipitation method. Through XRD analysis, it was revealed that the structures of the catalysts prepared by the two methods were different. In the reaction, methanol selectivity increased and carbon dioxide selectivity decreased with pressure due to the suppression of complete oxidation reaction at a high pressure.

본 연구는 메탄 부분산화에 의한 메탄올 직접 합성을 위한 촉매 개발을 목표로 수행되었다. 이를 위하여 Mo-Bi-V-Al 복합 산화물 촉매를 제조하였으며, 제조 방법에 따른 촉매 물성을 비교하고, 제조한 촉매를 이용하여 메탄올 합성반응을 수행하여 그 결과를 검토하여 보았다. 졸-겔법으로 제조한 촉매가 공침법으로 제조한 촉매보다 비표면적이 훨씬 컸다. 입자가 작고 표면적이 클수록 부분산화반응보다는 완전산화반응이나 메탄올 산화반응이 더 잘 진행되어 메탄올의 선택도는 낮아지고 이산화탄소의 선택도는 증가하였다. 졸-겔법으로 제조한 촉매가 공침법으로 제조한 촉매보다 약 $20^{\circ}C$ 정도 더 낮은 온도에서 더 높은 메탄올 선택도(13%)를 보였다. 두 방법으로 제조한 촉매의 XRD 분석 결과 두 촉매의 결정 구조가 서로 달랐다. 본 반응에서 압력이 증가할수록 완전산화 반응이 억제되고 부분산화 반응이 일어나서 메탄올의 선택도는 증가하였고 이산화탄소의 선택도는 감소하였다.

Keywords

References

  1. Lange, J. P., "Methanol Synthesis: a Short Review of Technology Improvements, " Catal. Today, 64, 3-8(2001). https://doi.org/10.1016/S0920-5861(00)00503-4
  2. Gradassi, M. J. and Green, N. W., "Economic of Natural Gas Conversion Processes," FuelProcess. Tech., 42, 65-83(1995).
  3. Mizsey, P., Newson, E., Truong, T. and Hottinger, P., "The Kinetics of Methanol Decomposion: a Part of Autothermal Partial Oxidation to Produce Hydrogen for Fuel Cells, " Appl. Catal. A: Gen., 213, 233-237(2001). https://doi.org/10.1016/S0926-860X(00)00907-8
  4. Sun Y. K. and Lee, W. Y., "Catalytic Behavior of $YBa_2Cu_3O_{7-x}$ in the Partial Oxidation of Methanol to Formaldehyde," Korean J. Chem. Eng., 12(1), 36-38(1995). https://doi.org/10.1007/BF02697704
  5. Choi, W. J., Park, J. Y., Kim, M. S., Park, H. S. and Hahm, H. S., "Catalytic Partial Oxidation of Methane to Methanol," J. Ind. Eng. Chem., 7(4), 187-192(2001).
  6. Bielanski, A. and Haber, J., Oxygen in Catalysis, Marcel Dekker Inc., 423-441(1991).
  7. Taylor, S. H., Hargreaves, J. S. J., Hutchings, G. J., Joyner, R. W. and Lembacher, C. W., "The Partial Oxidation of Methane to Methanol: An Approach to Catalyst Design," Catal. Today, 42, 217-224(1998). https://doi.org/10.1016/S0920-5861(98)00095-9
  8. Aoki, K., Ohmae, M., Nanba, T., Takeishi, K., Azuma, N., Ueno, A. and Ohfune, H., Hayashi, H. and Udagawa, Y., "Direct Conversion of Methane into Methanol over $MoO_3/SiO_2$ Catalyst in an Excess Amount of Water Vapor," Catal. Today, 45, 29-33(1998). https://doi.org/10.1016/S0920-5861(98)00236-3
  9. Zhang, Q., Dehua, H., Han, Z. S., Zhang, X. and Zhu, Q., "Controlled Partial Oxidation of Methane to Methanol/formaldehyde over Mo-V-Cr-Bi-Si Oxide Catalysts," Fuel, 81(11-12), 1599-1603 (2002). https://doi.org/10.1016/S0016-2361(02)00076-5
  10. Bannares, M. A., Alemany, L. J., Granados, M. L., Faraldos, M. and Fierro, J. L. G., "Partial Oxidation of Methane to Formaldehyde on Silica-supported Transition Metal Oxide Catalysts," Catal. Today, 23(1-3), 73-83(1997).
  11. Volpe, M. A., "Partial Oxidation of Methane over $VO_X/{\alpha}-Al_2O_3$ Catalysts," Appl.Catal. A: Gen., 210, 355-361(2001). https://doi.org/10.1016/S0926-860X(00)00810-3
  12. Shin, K. S., "Direct Methanol and Formaldehyde Synthesis from Methane," M. S. Thesis, Myongji University, Yongin(2002).
  13. Brinker, C. G. and George, W. S., The Physics and Chemistry of Sol-Gel Processing, Academic Press, New York(1990).
  14. Bae, S. and Choung, S., "Studies on the Preparation of $SiO_2-TiO_2-V_2O_5$ Catalyst by SOL-GEL Method and its Application as a Simultaneous Removal of NOx and SOx from Stationary Sources," J. Korean Ind. Eng. Chem., 7(2), 269-279(1996).
  15. Klabunde, K. J., Nanoscale Materials in Chemistry, Wiley, pp. 85-120(2001).
  16. Hwang, U. Y., Lee, S. W., Lee, J. W., Park, H. S., Koo, K. K., Kim, Y. R., Yoon, H. S. and Yoo, S. J., "Synthesis of Porous $Al_2O_3$ Particle by Sol-Gel Method," HWAHAK KONGHAK, 39, 199-205(2001).
  17. Hunter, N. R., Gesser, H. D., Morton, L. A. and Yarlagadda, P. S., "Methanol Formation at High Pressure by the Catalyzed Oxidation of Natural Gas and by the Sensitized Oxidation of Methane," Appl. Catal., 57, 45-54(1990). https://doi.org/10.1016/S0166-9834(00)80722-8