• Title/Summary/Keyword: mixed mode crack propagation

Search Result 83, Processing Time 0.031 seconds

Fatigue Crack Closure and Propagation Behavior Under Mixed-Mode Loading Observed by the Direct Measuring Method (직접측정법을 이용한 혼합모드 하중 하에서 피로균열의 닫힘과 전파거동)

  • Song Sam Hong;Seo Ki Jeong;Lee Jeong Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.152-158
    • /
    • 2005
  • The stress conditions acting on the practical structure are complex, and thus most cracks existing in the practical structures are under mixed-mode loading conditions. The effect of shear load component of mixed-mode loading acts more greatly in the stage of crack initiation and initial propagation than crack propagation stage. Hence, research on the behavior in the stage of crack initiation and initial propagation need to be examined in order to evaluate behavior of mixed-mode fatigue cracks. In this study, the crack tip displacement(CTD) was measured by using the direct measuring method(DMM). We examined the behavior at crack tip by determining crack opening load$(P_{op})$. From the test results, the propagation behavior of mixed-mode fatigue cracks was evaluated by considering mixed-mode crack closure. Also, we examined the characteristic of crack propagation under mixed-mode loading with crack propagation direction.

Effect of Stress Ratio on Fatigue Crack Growth in Mixed Mode(I+II) (혼합모드(I+II)에서 피로균열진전에 미치는 응력비의 영향)

  • Gong, Byeong-Chae;Choi, Myoung-Su;Kwon, Hyun-Kyu;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.90-96
    • /
    • 2009
  • The loading condition of actual construction works is complex. The shear effect of mixed-mode load component are crack propagation mechanism in step larger than the crack initial mechanism. Therefore, in this study received a mixed-mode loading on fatigue crack stress ratio on crack propagation path and speed of progress to learn whether stress affects crack propagation. ${\Delta}$ P a constant state of fatigue tests in Mode I, II give the same stress ratio, frequency 10Hz, sinusoidal waveform was used. A lower stress ratio fatigue crack propagation angle is small. This is less affected by the Mode II. Therefore, a mixed-mode fatigue crack propagation is to progress by the Mode. Stress ratio in a mixed mode crack in the path of progress and found a lot of impact.

  • PDF

Fatigue Crack Propagation Behavior in STS304 Under Mixed-Mode Loading

  • Lee, Jeong-Moo;Song, Sam-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.796-804
    • /
    • 2003
  • The use of fracture mechanics has traditionally concentrated on crack growth under an opening mechanism. However, many service failures occur from cracks subjected to mixed-mode loading. Hence, it is necessary to evaluate the fatigue behavior under mixed-mode loading. Under mixed-mode loading, not only the fatigue crack propagation rate is of importance, but also the crack propagation direction. In modified range 0.3$\leq$a/W$\leq$0.5, the stress intensity factors (SIFs) of mode I and mode II for the compact tension shear (CTS) specimen were calculated by using elastic finite element analysis. The propagation behavior of the fatigue cracks of cold rolled stainless steels (STS304) under mixed-mode conditions was evaluated by using K$\_$I/ and $_{4}$ (SIFs of mode I and mode II). The maximum tangential stress (MTS) criterion and stress intensity factor were applied to predict the crack propagation direction and the propagation behavior of fatigue cracks.

Fatigue Crack Propagation Behavior in CTS Specimen Under Mixed-Mode Loading with Hole Defefects (원공 결함을 갖는 CTS 시험편의 혼합모드 하중 하에서의 피로균열 전파거동)

  • Song, Sam-Hong;Shin, Seung-Man;Lee, Jeong-Moo;Seo, Ki-Jeong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.137-142
    • /
    • 2003
  • In this study, the propagation behavior of fatigue crack effected hole defects was investigated under mixed-mode I+II loading. To create mixed-mode stress field at crack tip, the compact tension shear (CTS) specimen and loading device were used in this tests. The propagation experiments of fatigue crack were performed by changing of the loading application angle(${\phi}$) and the distance(L) estimated from pre-crack tip to hole center located side by side by side with a pre-crack. As L changes, the variation for propagation aspect of fatigue crack, fatigue life and crack propagation rate were examined under mixed-mode loading. Under mixed-mode loading, the propagation rate of fatigue crack increased while the propagation direction changed dramatically because of the interference of hole defects.

  • PDF

Fatigue Crack Propagation Behavior in STS304 under Mixed Mode Loading (혼합모드 하중에서의 STS304의 피로균열 전과거동)

  • Song, Sam-Hong;Lee, Jeong-Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.131-139
    • /
    • 2001
  • The use of fracture mechanics has traditionally concentrated on crack growth under an opening mechanism. However, many service failure occur from cracks subjected to mixed mode loadings. Hence, it is necessary to evaluate the fatigue behavior under mixed mode loading. Under mixed mode loading conditions, not only the fatigue crack propagation rate is of importance, but also the crack propagation direction. The mode I and II stress intensity factors of CTS specimen were calculated using elastic finite element method. The propagation behavior of the fatigue crack of the STS304 steeds under mixed mode loading condition was evacuated by using stress intensity factors $K_I$ and $K_II. The MTS criterion and effective stress intensity factor were applied to predict the crack propagation direction and the fatigue crack propagation rate.

  • PDF

Fatigue Crack Propagation Behavior under Mixed Mode Loading (혼합모드 하중에서의 피로균열 전파거동)

  • 송삼홍;이정무;최병호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.481-484
    • /
    • 2000
  • Practical structures are subject not only to tension but also to shear and torsional loading. Even under uniaxial loading, when the load is not perpendicular to the crack plane, mixed mode crack can occur. Hence, it is necessary to evaluate the fatigue behavior under mixed mode loading. In this study, the propagation behavior of the fatigue crack of the STS304 steels under mixed mode loading condition was investigated. The mode I and II stress intensity factors of CTS specimen were calculated using elastic finite element method with experimental results. The fatigue crack propagation under mixed mode was evaluated by the effective stress intensity factor proposed by Tanaka.

  • PDF

An Experimental Study on the Fatigue Crack Propagation Behavior Under Mixed-Mode Single Overload (혼합모드 단일과대하중 하의 피로균열 전파거동에 관한 실험적 연구)

  • Song, Sam-Hong;Lee, Jeong-Moo;Hong, Suck-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.119-124
    • /
    • 2003
  • In this study, retardation behavior of fatigue crack under single overloading of the mixed mode I+II state was experimentally investigated. To produce single overload in the mixed mode I+II state, the compact tension shear (CTS) specimen and loading device were used. The propagation tests for fatigue crack were performed under mode I loading overloading afterwards. We examined the observed deformation aspects, variation of fatigue life and crack propagation rate, and the aspects of retardation behavior from tests. The retardation effect of mixed-mode single overload on fatigue crack propagation behavior was smaller than that of mode I single overload. It has been confirmed that the retardation behavior did not immediately appear and the retardation length was short when the component of mixed-mode overload was changed.

  • PDF

Effects of Failure Mode II on Crack Initiation and Crack propagation Steps Using Multilevel Fatigue Loading Test (다단계 피로하중 실험을 통한 균열 발생 및 전파단계에서 파괴모드 II 영향 분석)

  • Hong, Seok Pyo;Park, Sae Min;Kim, Ju Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.853-860
    • /
    • 2017
  • To evaluate the effects of mode II on the crack initiation and propagation stages, the effects in the fatigue threshold region under a mixed-mode I+II loading state was experimentally investigated. In the case of mixed-mode I + II, during the crack initiation stage, as the loading application angle (${\theta}$) increased, cracks occurred in the lower load owing to the effects of mode II, while the crack propagation rate decreased. The effects of mode II were experimentally investigated in the crack propagation stage by means of multilevel loading direction variation. Following mixed-mode I+II ($0^{\circ}{\rightarrow}{\theta}{\rightarrow}60^{\circ}$), as the load application angle increased, the fatigue crack propagation rate decreased, as did the fatigue crack propagation rate, which occurred later. Following mixed-mode I + II in case of(${\theta}{\geq}75^{\circ}$), the fatigue crack propagation rate was found to increase, while the fatigue life decreased.

Behaviour of Fatigue Crack Propagation under Mixed Mode(I+II) with variation of Angle and Crack Length (혼합모드(I+II)하에서 각도와 균열길이 변화를 갖는 피로균열 전파 거동)

  • 정의효
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.73-79
    • /
    • 2000
  • The applications of fracture mechanics have traditionally concentrated on cracks loaded by tensile stresses, and growing under an opening or mode I mechanism. However, many cases of failures occur from growth of cracks subjected to mixed mode loading. Several criteria have been proposed regarding the crack growth direction under mixed mode loadings. This paper is aimed at investigation of fatigue crack growth behaviour under mixed mode(I+II) with variation of angle and pre-crack length in two dimensional branched type precrack. Especially the direction of fatigue crack propagation was predicted and effective stress intensity factor was calculated by finite element analysis(FEA. In this paper, the maximum tangential stress(MTS) criterion was used to predict crack growth direction. Not only experiment but also finite element analysis was carried out and the theoretical predictions were compared with experimental results.

  • PDF

Effects with the Variation of Single Overload mode on Propagation Behavior of Fatigue Crack (단일과대하중의 작용모드 변화가 피로균열의 전파거동에 미치는 영향)

  • 송삼홍;이정무;신승만;홍석표;서기정
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1508-1512
    • /
    • 2003
  • In this study, retardation behavior of fatigue crack under single overloading of the mixed mode state was experimentally investigated. To produce single overload in the mixed mode I+II state, the compact tension shear (CTS) specimen and loading device were used. The propagation tests for fatigue crack were performed under mode I and mixed-mode loading overloading afterwards. We examined the observed deformation aspects, the variation of fatigue life and crack propagation rate, and the aspects of retardation behavior from tests. The retardation effect of mixed-mode single overload on fatigue crack propagation behavior was smaller than that of mode I single overload. Also the loading modes of variable and constant amplitude loads have influence on the retardation behavior of fatigue cracks.

  • PDF