• Title/Summary/Keyword: mixed micelle

Search Result 74, Processing Time 0.033 seconds

Thermodynamic Study on the Micellar Properties of TTAB/Brij 35 Mixed Surfactant Systems (TTAB/Brij 35 혼합계면활성제의 미셀화에 대한 열역학적 연구)

  • Gil, Han-Nae;Lee, Byung-Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.2
    • /
    • pp.129-135
    • /
    • 2007
  • The critical micelle concentrations (CMC) and the counter ion binding constants (B) in a micellar state of the mixed surfactant systems of Tetradecyltrimethylammonium bromide (TTAB) with Polyoxyethylene(23) lauryl ether (Brij 35) in water were determined as a function of α1 (the overall mole fraction of TTAB) by the use of electric conductivity method and surface tensiometer method from 15 oC to 35 oC. Values of thermodynamic parameters (ΔGom, ΔHom, and ΔSom) for the micellization of TTAB/Brij 35 mixtures were calculated and analyzed from the temperature dependence of CMC values. The results say that the measured values of ΔGom are all negative at the whole measured condition but the values of ΔSom and ΔHom are positive or negative, depending on the measured temperature and α1.

Thermodynamic Study on the Micellar Properties of DBS/Brij 30 Mixed Surfactant Systems (DBS/Brij 30 혼합계면활성제의 미셀화에 대한 열역학적 연구)

  • Lee, Byeong-Hwan;Park, In-Jeong
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.3
    • /
    • pp.190-195
    • /
    • 2006
  • The critical micelle concentrations (CMC) and the counter ion binding constants (B) in a micellar state of the mixed surfactant systems of sodium dodecylbenzenesulfonate (DBS) with polyoxyethylene(4) lauryl ether (Brij 30) in water were determined as a function of 1 (the overall mole fraction of DBS) by the use of electric conductivity method and surface tensiometer method from 288 K to 308 K. Various thermodynamic parameters (Smo, Hmo, and Gmo) for the micellization of DBS/Brij 30 mixtures were calculated and analyzed from the temperature dependence of CMC values. The measured values of Gomare all negative but the values of Smo are positive in the whole measured temperature region. On the other hand, the values of Hmo are positive or negative, depending on the measured temperature and 1.

Detergent and Phospholipid Mixed Micelles as Proliposomes for an Intravenous Delivery of Water-Insoluble Drugs

  • Son, Kyong-Hee
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.3
    • /
    • pp.17-34
    • /
    • 1992
  • A novel drug delivery system, detergent-phospholipid mixed micelles as proliposomes, for water-insoluble compounds was developed by investigating (i) spontaneous formation of small unilamellar vesicles (SUV) from bile salt-egg phosphatidylcholine mixed micelles, (ii) the molecular mechanism of micelle-to-vesicle transition in aqueous mixtures of detergent-phospholipid, (iii) preparation and screening of a suitable liposomal formulation for a lipophilic drug: solubilization of the drug within the lipid bilayer, evaluation of the solubility limit, and characterization of the resulting product with respect to the physical properties and stability of the drug in the system, and (iv) testing antitumor activity in vitro. The results showed that the new carrier had a strong possibility to be a biocompatible universal formulation for water-insoluble drugs.

  • PDF

Thermodynamics on the Micellization of Pure Cationic(DTAB, TTAB, CTAB), Nonionic(Tween-20, Tween-40, Tween-80), and Their Mixed Surfactant Systems (순수 양이온성(DTAB, TTAB, CTAB), 비이온성(Tween-20, Tween-40, Tween-80) 및 이들 혼합 계면활성제의 미셀화에 대한 열역학적 연구)

  • Lee, Nam-Min;Lee, Byung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.679-687
    • /
    • 2013
  • The critical micelle concentration (CMC) and counter-ion binding constant (B) of the pure cationic surfactants (DTAB, TTAB, CTAB), nonionic surfactants (Tween-20, Tween-40, Tween-80), and their mixed surfactants (TTAB/Tween-20, TTAB/Tween-40, TTAB/Tween-80) in aqueous solutions of 4-chlorobenzoic acid were determined by using the UV/Vis absorbance method and the conductivity method from 284 K to 312 K. Thermodynamic parameters (${\Delta}G^o{_m}$, ${\Delta}H^o{_m}$, and ${\Delta}S^o{_m}$), associated with the micelle formation of those surfactant systems, have been estimated from the dependence of CMC and B values on the temperature and carbon length of surfactant molecules. The calculated values of ${\Delta}G^o{_m}$ are all negative within the measured range but the values of ${\Delta}H^o{_m}$ and ${\Delta}S^o{_m}$ are positive or negative, depending on the length of the carbon chain and surfactant.

Effect of OHθ and o-lodosobenzoate Ions on Dephosphorylation of Organo Phosphororus Ester in CTAX Micelle (CTAX 미셀 용액속에서 유기인 에스테르 화학물의 탈인산화 반응에 대한 OHθ 및 o-lodosobenzoate 이온의 영향)

  • Kim Jeung-Bea;Kim Hak-Yoon
    • Journal of Environmental Science International
    • /
    • v.14 no.2
    • /
    • pp.241-249
    • /
    • 2005
  • This study deals with micellar effects on dephosphorylation of diphenyl-4- nitrophenylphosphate (DPNPPH), diphenyl-4-nitrophenylphosphinate (DPNPlN) and isopropylphenyl-4-nitrophenyl phosphinate (IPNPlN) mediated by $OH^\Theta$ or o-iodosobenzoate ion $(IB^\Theta)$ in aqueous and CTAX solutions. Dephosphorylation of DPNPPH, DPNPIN and IPNPIN mediated by $OH^\Theta$ or o-iodosobenzoate ion $(IB^\Theta)$ is relatively slow in aqueous solution. The reactions in CTAX micellar solutions are, however, much accelerated because CTAX micelles can accommodate both reactants in their Stem layer in which they can easily react, while hydrophilic $OH^\Theta\;(or\;IB^\Theta)$ and hydrophobic substrates are not mixed in water. Even though the concentrations $(>10^{-3}\;M)\;of\;OH^\Theta\;(or\;IB^\Theta)$ in CTAX solutions are much larger amounts than those $(6\times10^{-6}\;M)$ of substrates, the rate constants of the dephosphorylations are largely influenced by the change of concentration of the ions, which means that the reactions are not followed by the pseudo first order kinetics. In comparison to effect of the counter ions of CTAX in the reactions, CTACI is more effective on the dephosphorylation of substrates than CTABr due to easier expelling of $Cl^\Theta$ ion by $OH^\Theta\;(or\;IB^\Theta)$ ion from the micelle, because of easier solvation of $Cl^\Theta$ ion by water molecules. The reactivity of IPNPlN with $OH^\Theta\;(or\;IB^\Theta)$ is lower than that of DPNPlN. The reason seems that the 'bulky' isopropyl group of IPNPIN hinders the attack of the nucleophiles.

Thermodynamics on the Mixed Micellization of Sodium Dodecylsulfate(SDS) with Sodium Dodecylbenzenesulfonate(DBS) in Pure Water (순수 물에서 Sodium Dodecylsulfate(SDS)와 Sodium Dodecylbenzenesulfonate(DBS)의 혼합미셀화에 대한 열역학적 고찰)

  • Lee, Byung Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.6
    • /
    • pp.420-426
    • /
    • 1996
  • The critical micelle concentration(CMC) and the counterion binding $constant(\beta)$ at the CMC of the mixtures of Sodium dodecylsulfate(SDS) with Sodium dodecylbenzenesulfonate(DBS) in aqueous solutions have been determined from the concentration dependence of electrical conductance at several temperatures from $15^{\circ}C$ to $35^{\circ}C.$ Thermodynamic parameters(${\Delta}C_p,\;{\Delta}G_m^{\circ},\;{\Delta}H_m^{\circ}$${\Delta}S_m^{\circ}$ and ${\Delta}C_p$), associated with the micelle formation of SDS/DBS mixtures, have been estimated from the temperature dependence of CMC and $\beta$ values. The measured values of ${\Delta}G_m^{\circ}\;and\;{\Delta}C_p$ are negative but the values of ${\Delta}S_m/^{\circ}$ are positive in the whole measured temperature region. The significance of these thermodynamic parameters and their relation to the theory of the micelle formation of SDS/DBS mixtures have been also considered.

  • PDF

Synthesis and Characterization of CoAl2O4 Inorganic Pigment Nanoparticles by a Reverse Micelle Processing (역-마이셀 공정에 의한 CoAl2O4 무기안료 나노 분말의 합성 및 특성)

  • Son, Jeong-Hun;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.24 no.7
    • /
    • pp.370-374
    • /
    • 2014
  • Inorganic pigments have high thermal stability and chemical resistance at high temperature. For these reasons, they are used in clay, paints, plastic, polymers, colored glass and ceramics. $CoAl_2O_4$ nano-powder was synthesized by reverse-micelle processing the mixed precursor(consisting of $Co(NO_3)_2$ and $Al(NO_3)_3$). The $CoAl_2O_4$ was prepared by mixing an aqueous solution at a Co:Al molar ratio of 1:2. The average particle size, and the particle-size distribution, of the powders synthesized by heat treatment (at 900; 1,000; 1,100; and $1,200^{\circ}C$ for 2h) were in the range of 10-20 nm and narrow, respectively. The average size of the synthesized nano-particles increased with increasing water-to-surfactant molar ratio. The synthesized $CoAl_2O_4$ powders were characterized by X-ray diffraction analysis(XRD), field-emission scanning electron microscopy(FE-SEM) and color spectrophotometry. The intensity of X-ray diffraction of the synthesized $CoAl_2O_4$ powder, increased with increasing heating temperature. As the heating temperature increased, crystal-size of the synthesized powder particles increased. As the R-value(water/surfactant) and heating temperature increased, the color of the inorganic pigments changed from dark blue-green to cerulean blue.

Cholesteryl N-Monomethoxypoly(ethylene glycol)-succinate-L-phenylalanine: Synthesis and Effect on Liposomes

  • Yang, Won-Young;Lee, Sang-Hee;Lee, Eun-Ok;Chung, Guk-Hoon;Lee, Youn-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.93-97
    • /
    • 2002
  • Poly(ethylene glycol)-phosphatidylethanolamine conjugate (PEG-PE) has been used in preparing longcirculating liposomes. As a substitute for PEG-PE which can also be used in the long-circulating liposome formualtions, but can be prepared more readily with a lower cost, PEG-Phe-Chol was synthesized from PEG, phenylalanine, and cholesterol. The addition of the PEG derivative to distearoylphosphatidylcholine (DSPC) led to the formation of mixed micelles as well as liposomes when the derivative content was 10 mol% or greater. On the other hand, the addition of just 5 mol% PEG-Phe-Chol to dioleoylphosphatidylethanolamine (DOPE) generated mixed micelles as well as liposomes, but the formation of mixed micelles was completely inhibited by the addition of cholesterol. The leakage of entrapped calcein out of DOPE/cholesterol (7/3) liposomes containing 5 mol% PEG-Phe-Chol was about 45% during the incubation time for 24 h in 50% rabbit plasma, which was similar to that of the same liposomes containing 5 mol% PEG-dipalmitoylphosphatidylethanolamine (DPPE) under the identical conditions.

Degradation of Phenanthrene by Bacterial Strains Isolated from Soil in Oil Refinery Fields in Korea

  • KIM JEONG DONG;SHIM SU HYEUN;LEE CHOUL GYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.337-345
    • /
    • 2005
  • The degradation of phenanthrene, a model PAH compound, by microorganisms either in the mixed culture or individual strain, isolated from oil-contaminated soil in oil refmery vicinity sites, was examined. The effects of pH, temperature, initial concentration of phenanthrene, and the addition of carbon sources on biodegradation potential were also investigated. Results showed that soil samples collected from four oil refinery sites in Korea had different degrees of PAH contamination and different indigenous phenanthrene-degrading microorganisms. The optimal conditions for phenanthrene biodegradation were determined to be 30$^{circ}C$ and pH 7.0. A significantly positive relationship was observed between the microbial growth and the rate of phenanthrene degradation. However, the phenanthrene biodegradation capability of the mixed culture was not related to the degree of PAH contamination in soil. In low phenanthrene concentration, the growth and biodegradation rates of the mixed cultures did not increase over those of the individual strain, especially IC10. High concentration of phenanthrene inhibited the growth of microbial strains and biodegradation of phenanthrene, but was less inhibitory on the mixed culture. Finally, when non-ionic surfactants such as Brij 30 and Brij 35 were present at the level above critical micelle concentrations (CMCs), phenanthrene degradation was completely inhibited and delayed by the addition of Triton X100 and Triton N101.