Browse > Article
http://dx.doi.org/10.5012/jkcs.2007.51.2.129

Thermodynamic Study on the Micellar Properties of TTAB/Brij 35 Mixed Surfactant Systems  

Gil, Han-Nae (Department of Applied Chemical Engineering, Korea University of Technology & Education)
Lee, Byung-Hwan (Department of Applied Chemical Engineering, Korea University of Technology & Education)
Publication Information
Abstract
The critical micelle concentrations (CMC) and the counter ion binding constants (B) in a micellar state of the mixed surfactant systems of Tetradecyltrimethylammonium bromide (TTAB) with Polyoxyethylene(23) lauryl ether (Brij 35) in water were determined as a function of α1 (the overall mole fraction of TTAB) by the use of electric conductivity method and surface tensiometer method from 15 oC to 35 oC. Values of thermodynamic parameters (ΔGom, ΔHom, and ΔSom) for the micellization of TTAB/Brij 35 mixtures were calculated and analyzed from the temperature dependence of CMC values. The results say that the measured values of ΔGom are all negative at the whole measured condition but the values of ΔSom and ΔHom are positive or negative, depending on the measured temperature and α1.
Keywords
Mixed Surfactant System; TTAB; Brij 35; Critical Micelle Concentration; Counter Ion Binding Constant; Iso-Structural Temperature;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Hildebrand, A.; Garidel, P.; Neubert, R.; Blume, A. Langmuir 2004, 20, 320   DOI   ScienceOn
2 Junquera, E.; Aicart, E. Langmuir 2002, 18, 9250   DOI   ScienceOn
3 Inglese, A.; Lisi, R. De; Milioto, S. J. Phys. Chem. 1996, 100, 2260   DOI   ScienceOn
4 Ueno, M.; Asano, H. In Mixed Surfactant Systems Ogino, K.; Abe, M., Ed.; Marcel Dekker Inc.: New York, U.S.A., 1993 p 258
5 Holland, P. M.; Rubingh, D. N. J. Phys. Chem. 1983, 87, 1984   DOI
6 Clint, J. H. In Surfactant Aggregation Chapman and Hall: New York, 1992, p 130
7 Kumbhakar, M.; Goel, T.; Mukerjee, T.; Pal, H. J. Phys. Chem. B 2005, 109, 14168   DOI   ScienceOn
8 Sharma, K. S.; Patil, S. R.; Rakshit, A. K. J. Phys. Chem. B 2004, 108, 12804   DOI   ScienceOn
9 Park, I. J.; Lee, B. H. J. Kor. Chem. Soc. 2006, 50, 190   DOI   ScienceOn
10 Muller, N. Langmuir 1993, 9, 96   DOI
11 Mesa, C. La J. Phys. Chem. 1990, 94, 323   DOI
12 Burgo, P. del; Junquera, E.; Aicart, E. Langmuir 2004, 20, 1587   DOI   ScienceOn
13 Bastiat, G.; Gras, B.; Khoukh, A.; Francois, J. Langmuir 2004, 20, 5759   DOI   ScienceOn
14 Gerber, S.; Garamas, V. M.; Milkereit, G.; Vill, V. Langmuir 2005, 21, 6707   DOI   ScienceOn
15 Lee, B. H. J. Kor. Chem. Soc. 2004, 48, 236   DOI   ScienceOn
16 Kim, Y. C.; Lee, B. H. J. Kor. Chem. Soc. 2005, 49, 435   DOI   ScienceOn
17 Shanks, P. C.; Franses, E. I. J. Phys. Chem. 1992, 96, 1794   DOI
18 Zana, R.; Levy, H.; Papoutsi, D.; Beinert, G. Langmuir 1995, 11, 3694   DOI   ScienceOn
19 Penfold, J.; Tucker, I.; Thomas, R. K.; Staples, E.; Schuermann, R. J. Phys. Chem. B 2005, 109, 10770   DOI   ScienceOn
20 Kim, H. U.; Lee, J. K.; Lim, K. H. J. Korean Ind. Eng. Chem. 2005, 16, 231
21 Garamus, V. M. Langmuir 2003, 19, 7214   DOI   ScienceOn
22 Lim, K. H; Kang, K. H; Lee, M. J. J. Korean Ind. Eng. Chem., 2006, 17, 625