• Title/Summary/Keyword: mixed discontinuous Galerkin method

Search Result 5, Processing Time 0.021 seconds

HIGHER ORDER DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS FOR NONLINEAR PARABOLIC PROBLEMS

  • Ohm, Mi Ray;Lee, Hyun Young;Shin, Jun Yong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.4
    • /
    • pp.337-350
    • /
    • 2014
  • In this paper, we consider discontinuous Galerkin finite element methods with interior penalty term to approximate the solution of nonlinear parabolic problems with mixed boundary conditions. We construct the finite element spaces of the piecewise polynomials on which we define fully discrete discontinuous Galerkin approximations using the Crank-Nicolson method. To analyze the error estimates, we construct an appropriate projection which allows us to obtain the optimal order of a priori ${\ell}^{\infty}(L^2)$ error estimates of discontinuous Galerkin approximations in both spatial and temporal directions.

ERROR ESTIMATES FOR A SEMI-DISCRETE MIXED DISCONTINUOUS GALERKIN METHOD WITH AN INTERIOR PENALTY FOR PARABOLIC PROBLEMS

  • Ohm, Mi Ray;Lee, Hyun Young;Shin, Jun Yong
    • East Asian mathematical journal
    • /
    • v.32 no.1
    • /
    • pp.101-115
    • /
    • 2016
  • In this paper, we consider a semi-discrete mixed discontinuous Galerkin method with an interior penalty to approximate the solution of parabolic problems. We define an auxiliary projection to analyze the error estimate and obtain optimal error estimates in $L^{\infty}(L^2)$ for the primary variable u, optimal error estimates in $L^2(L^2)$ for ut, and suboptimal error estimates in $L^{\infty}(L^2)$ for the flux variable ${\sigma}$.

ERROR ESTIMATES FOR FULLY DISCRETE MIXED DISCONTINUOUS GALERKIN APPROXIMATIONS FOR PARABOLIC PROBLEMS

  • OHM, MI RAY;LEE, HYUN YOUNG;SHIN, JUN YONG
    • East Asian mathematical journal
    • /
    • v.31 no.5
    • /
    • pp.685-693
    • /
    • 2015
  • In this paper, we introduce fully discrete mixed discontinuous Galerkin approximations for parabolic problems. And we analyze the error estimates in $l^{\infty}(L^2)$ norm for the primary variable and the error estimates in the energy norm for the primary variable and the flux variable.

DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR PARABOLIC PROBLEMS WITH MIXED BOUNDARY CONDITION

  • Ohm, Mi Ray;Lee, Hyun Yong;Shin, Jun Yong
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.5_6
    • /
    • pp.585-598
    • /
    • 2014
  • In this paper we consider the nonlinear parabolic problems with mixed boundary condition. Under comparatively mild conditions of the coefficients related to the problem, we construct the discontinuous Galerkin approximation of the solution to the nonlinear parabolic problem. We discretize spatial variables and construct the finite element spaces consisting of discontinuous piecewise polynomials of which the semidiscrete approximations are composed. We present the proof of the convergence of the semidiscrete approximations in $L^{\infty}(H^1)$ and $L^{\infty}(L^2)$ normed spaces.

HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR ELLIPTIC EQUATIONS WITH NONLINEAR COEFFICIENTS

  • MINAM, MOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.4
    • /
    • pp.244-262
    • /
    • 2022
  • In this paper, we analyze the hybridizable discontinuous Galerkin (HDG) method for second-order elliptic equations with nonlinear coefficients, which are used in many fields. We present the HDG method that uses a mixed formulation based on numerical trace and flux. Under assumptions on the nonlinear coefficient and H2-regularity for a dual problem, we prove that the discrete systems are well-posed and the numerical solutions have the optimal order of convergence as a mesh parameter. Also, we provide a matrix formulation that can be calculated using an iterative technique for numerical experiments. Finally, we present representative numerical examples in 2D to verify the validity of the proof of Theorem 3.10.