• Title/Summary/Keyword: mixed aggregate

Search Result 359, Processing Time 0.024 seconds

Fundamental Study on Recycling Waste Foundry Sand as Fine Aggregate for Concrete (폐주물사를 콘크리트용 잔골재로 재활용하기 위한 기초연구)

  • 문한영;최연왕;송용규;신동구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.281-286
    • /
    • 2001
  • The development of automobile, vessel, rail road, and machine industry leads increase of foundry production used as their components, which cause a by-product, waste foundry sand (WFS). The amount of the WFS produced in Korea is over 900,000 ton a year, but most WFS buries itself and only 5~6% WFS is recycled as a material in construction materials. In this study, WFS is used as a fine aggregate for concrete. Five types of concretes aimed at the specified strength of 240$\pm$10 kgf/$cm^{2}$ , air contents of 4.5$\pm$1% and slump of 12$\pm$1.5cm were mixed with washed coarse seashore sand(WFS) in which salt was removed and then optimum mix proportion of concrete was determined. Moreover, basic properties such as setting time, workability, bleeding and slump loss of the fresh concrete with WFS were tested and compared with those of the concrete mixed without WFS. In .addition, both compressive strength of hardened concrete at each ages and tensile strength of it at the age of 28 days were measured and discussed.

  • PDF

Analysis of the Mixing Conditions by Domestic Ready-Mixed Concrete Rage Sphere (국내 레미콘의 권역별 배합특성에 관한 분석 - 경기 및 경상권역을 중심으로 -)

  • Seo, Hwi-Wan;Kim, Young-Il;Kang, Ghang-Un;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.131-132
    • /
    • 2011
  • This study analyzes the yearly-best delivered size range of truck mixer based on the specified mix, Water to Binder Ratio, aggregate proportion and unit amount with statistical method targeting on Kyeongi and Kyeongsang province and compares with the similar materials of Japan to propose as a basic standard for the quality control of mixer truck. As a result, in case of the Water to Binder Ratio of these areas, it is higher than Japan's due to the excessive safety rate reflecting the changes of differential value impact and unit amount, and the unit amount's standard deviation is very large by reflecting the changes of the amount used and chemical admixture susceptibility. In case of aggregate proportion, the frequency rate is about 50%, which is very similar value with Japan's one.

  • PDF

A Study on the Freeze-Thaw Resistance of Planting Concrete Using Recycled Aggregate (재생골재를 이용한 식재용 콘크리트의 동결융해저항성에 관한 연구)

  • 이상태;전충근;김경민;최청각;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.233-236
    • /
    • 2003
  • This study is intended to investigate the resistance of frost damage of concrete for planting, which recycled aggregate is used, by freezing in air and thawing in water. According to the results, if AE agent of 0.005% is mixed in making concrete for planting, it is thought that the resistance of frost damage is guaranteed in winter because concrete for planting is not under severe freezing and thawing function, but under natural weather action.

  • PDF

Strength Estimation of Ready-Mixed Concrete Using Crushed Sand (부순모래를 사용한 레디믹스트 콘크리트의 배합설계 및 강도추정방법)

  • Suh, Jin-Kook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.1
    • /
    • pp.45-52
    • /
    • 1999
  • It is difficult to keep the balance of supply and demand for natural aggregates in recent years, because natural resources have become to be almost exhausted. Crushed stone is already used for coarse aggregate instead of river gravel at present. Now, crushed sand or sea sand should be used for fine aggregate, because natural sand also has been exhausted with a few exceptions around Nakdong River. The sea sand has a lot of problems which are the corrosion of reinforcement bars, the investment of facility for cleansing salt and the cost increase due to the insufficiency of industrial water. Therefore, it is necessary to produce and to utilize the crushed sand very actively, but some material properties which are related to water absorption, strength and chemical durability, prevent from determining the generalized criteria because its rocks make much differences in its physical and chemical characteristics. In this paper, fundamental physical properties of crushed sand, which comes from Daegu Subway construction fields, have been investigated for the usability on basic material of concrete. The optimum replacement ratio and the strength estimation method of crushed sand replacing natural sand also have been presented here through the compressive strength test of ready-mixed concrete cylinders.

  • PDF

Radiation Shielding Property of Concrete Using the Rapidly Cooled Steel Slag from Oxidizing Process in the Converter Furnace as Fine Aggregate

  • Kim, Jin-Man;Cho, Sung-Hyun;Kwak, Eun-Gu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.478-489
    • /
    • 2012
  • Each year, about four million tons of steel slag, a by-product produced during the manufacture of steel by refining pig iron in the converter furnace, is generated. It is difficult to recycle this steel slag as aggregate for concrete because the reaction with water and free-CaO in steel slag results in a volume expansion that leads to cracking. However, the steel slag used in this study is atomized using an air-jet method, which rapidly changes the melting substance at high temperature into a solid at a room temperature and prevents free-CaO from being generated in steel slag. This rapidly-cooled steel slag has a spherical shape and is even heavier than natural aggregate, making it suitable for the aggregate of radiation shielding concrete. This study deals with the radiation shielding property of concrete that uses the rapidly-cooled steel slag from the oxidizing process in the converter furnace as fine aggregate. It was shown that the radiation shielding performance of concrete mixed with rapidly-cooled steel slag is even more superior than that of ordinary concrete.

Experimental Study of Clays Mixed into Compaction Piles (다짐말뚝으로의 점토혼입현상에 관한 실험적 연구)

  • You, Seung-Kyong;Kim, Ju-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.4
    • /
    • pp.41-46
    • /
    • 2009
  • In this paper, a series of laboratory chamber tests were performed to evaluate the effects of clays mixed into compaction piles due to confining stress of ground on consolidation promoting. For the tests, various compaction piles such as SCP, GCP, and RAPP (Recycled-Aggregate Porous concrete Pile) were used. The ground condition was simulated at 50% and 100% of degree of consolidation. Also, confining stresses were applied to the composite ground corresponding to those of 5m depth. The amount of mixed clays into each compaction pile were estimated by measuring the drainage from the saturated compaction piles. From the test result, it was shown that the drainage area of compaction pile was changing according to the consolidation condition. GCP showed the most change of drainage area as it has relatively large void ratio; however, the amount of change was decreased by progressing consolidation of ground.

  • PDF

Review of Changes in Mechanical Properties of Concrete According to Recycled Coarse Aggregate Replacement Rate_Case Study (순환 굵은 골재 치환율에 따른 콘크리트의 역학적 특성 변화 검토_사례 연구)

  • Young-Jin Nam;Tae-Hyung Kim;Won-Chang Kim;Tae-Gyu Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.178-187
    • /
    • 2024
  • In this study, it was determined that it was necessary to consider the replacement rate when applying recycled coarse aggregate to concrete, so data on existing research trends and results were collected and the mechanical properties of concrete according to the replacement rate of recycled coarse aggregate were analyzed. In collecting data on recycled coarse aggregate, data without processes such as compressive strength and removal of residual mortar attached to recycled coarse aggregate were collected among the concrete measurement items. In the case of concrete with 50 % and 100 % replacement of recycled coarse aggregate, it was confirmed that the mechanical properties were lower or higher than ordinary concrete by -36.0 ~ 9.9 % and -40.0 ~ 10.4 %, respectively, on average. Accordingly, it is judged that additional water should be mixed in consideration of the absorption rate when mixing, and the replacement rate of recycled coarse aggregate, which has mechanical properties of 80 % or more compared to ordinary concrete, should be less than 50 %.

Drying Shrinkage Evaluation of Concretes with Various Volume-Surface Ratios, Aggregate Types and Concrete Pavement Mixes (시험체 형상비와 골재종류 및 배합특성에 따른 건조수축 특성평가)

  • Yang, Sung-Chul
    • International Journal of Highway Engineering
    • /
    • v.14 no.1
    • /
    • pp.45-53
    • /
    • 2012
  • This study was performed to analyze test results on drying shrinkage for concrete specimens mixed with various constituents in concrete mixes. Test variables are coarse aggregate types(Limestone, Sandstone, Granite, Andesite, Gneiss), fine aggregate types(natural sand, crushed sand) and cement amounts(normal strength, high strength). Epoxy coating of(U&V-H(A,B)) was applied onto the specimen surface to simulate diverse volume surface ratios(22.2, 40, 85.7, 150, 200, 300) with different specimen sizes. The experiments had been executed during 1,014 days at a condition of $20^{\circ}C$ and relative humidity of 60% in environmental chambers. Test results showed that shrinkage strain from the specimen equivalent to real pavement decreased to 39% compared to the standard specimen recommended by KS. Test results also showed that shrinkage strain of the specimen mixed with Limestone was 56~76% of that with Sandstone, thus Limestone mix seems to be suitable to the concrete pavement.

Influence of Low-Quality Aggregate on Engineering Properties of Concrete (동일배합 조건에서 저품질 골재가 콘크리트의 공학적 특성에 미치는 영향)

  • Min, Kyeong-Chul;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.187-194
    • /
    • 2016
  • In this research, the influence of low-quality aggregate on engineering properties of concrete was experimentally evaluated. From a series of experiment, the results can be summarized as follow: first, the low-quality aggregate in concrete mixture caused up to 83% of decreased slump. For air content, low-quality aggregate increased air content of concrete mixture. Especially, when sea sand was used, because of the narrow gradation with small size, the air content was significantly increased. The compressive strength of concrete mixtures with low-quality aggregates were decreased up to 29% while some cases showed slightly increased compressive strength at early age. Additionally, the concrete mixture mixed with the exploded debris as a coarse aggregate showed approximately 5 to 20% of decreased compressive strength comparing with high-quality of manufacturing rock. In summary, because of the decreased workability of concrete mixture mixed with low-quality aggregates such as exploded debris, clay, and sea sand, it is concerned that worse quality of the ready mixed concrete, produced with the extra water to compensate the decreased workability.