• Title/Summary/Keyword: mixed aggregate

Search Result 360, Processing Time 0.025 seconds

A Study on Induced effect of Aggregate and Stone Sector with Input-Output Table (산업연관표를 이용한 골재 및 석재부문의 경제적 파급효과 분석연구)

  • Kim, Ji Whan
    • Economic and Environmental Geology
    • /
    • v.54 no.5
    • /
    • pp.573-580
    • /
    • 2021
  • This study analyzed the induced effects of the aggregate and stone sectors using the industry association table. First, the added value of the aggregate and stone sectors was summarized, and then the intermediate input structure and induced effect were analyzed. In terms of value-added structure, aggregate and stone showed a higher employee remuneration rate compared to the manufacturing industry, and a higher rate of operating surplus compared to other mining industries. The intermediate input structure summarizes the sector using aggregate and stone products as intermediate inputs and their input ratio. The proportion of the intermediate element input structure was confirmed. In addition, the main input sectors of ready-mixed concrete, the largest consumer of aggregate and stone, are also summarized. The production-inducing effect of aggregate and stone showed a higher influence coefficient than the sensitivity coefficient, confirming that they had a relatively large rear chain effect. The production inducement effect was reviewed by reconstructing the industry association table, and it was found to show a relative superiority in the influence coefficient, similar to the results derived according to the provisional classification of the Bank of Korea.

The Neutralization Treatment of Waste Mortar and Recycled Aggregate by Using the scCO2-Water-Aggregate Reaction (초임계이산화탄소-물-골재 반응을 이용한 폐모르타르와 순환골재의 중성화 처리)

  • Kim, Taehyoung;Lee, Jinkyun;Chung, Chul-woo;Kim, Jihyun;Lee, Minhee;Kim, Seon-ok
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.359-370
    • /
    • 2018
  • The batch and column experiments were performed to overcome the limitation of the neutralization process using the $scCO_2$-water-recycled aggregate, reducing its treatment time to 3 hour. The waste cement mortar and two kinds of recycled aggregate were used for the experiment. In the extraction batch experiment, three different types of waste mortar were reacted with water and $scCO_2$ for 1 ~ 24 hour and the pH of extracted solution from the treated waste mortar was measured to determine the minimum reaction time maintaining below 9.8 of pH. The continuous column experiment was also performed to identify the pH reduction effect of the neutralization process for the massive recycled aggregate, considering the non-equilibrium reaction in the field. Thirty five gram of waste mortar was mixed with 70 mL of distilled water in a high pressurized stainless steel cell at 100 bar and $50^{\circ}C$ for 1 ~ 24 hour as the neutralization process. The dried waste mortar was mixed with water at 150 rpm for 10 min. and the pH of water was measured for 15 days. The XRD and TG/DTA analyses for the waste mortar before and after the reaction were performed to identify the mineralogical change during the neutralization process. The acryl column (16 cm in diameter, 1 m in length) was packed with 3 hour treated (or untreated) recycled aggregate and 220 liter of distilled water was flushed down into the column. The pH and $Ca^{2+}$ concentration of the effluent from the column were measured at the certain time interval. The pH of extracted water from 3 hour treated waste mortar (10 ~ 13 mm in diameter) maintained below 9.8 (the legal limit). From XRD and TG/DTA analyses, the amount of portlandite in the waste mortar decreased after the neutralization process but the calcite was created as the secondary mineral. From the column experiment, the pH of the effluent from the column packed with 3 hour treated recycled aggregate kept below 9.8 regardless of their sizes, identifying that the recycled aggregate with 3 hour $scCO_2$ treatment can be reused in real construction sites.

Experimental Study on the Strength of Concrete Specimens Mixed with Tire Chips (폐타이어 입자혼입 콘크리트의 강도별 특성 실험)

  • Son, Ki-Sang
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.84-90
    • /
    • 2005
  • This study is to use results of the experiment on the influence to the strength by mixing powders of wasted tires into regular remicon within a range of little effectiveness in durability, applicability, economic aspect, and workability, to put it to practical use and to apply as basic data from a view of recycling wasted tires as construction materials. And the concrete, which was mixed with 10mm particles with ratio of $0.5\%\;and\;1.0\%$ respectively at 270 of mixing strength, was reduced by $27\%$ in compressive strength compared to normal concrete, whereas concrete mixed with other than 10mm particles showed lower decrease ratio compared to the former by reducing only $1.0\%\~1.5\%$. it is found that as strength increases, the less in quantity of aggregate and the more increase in quantity of cement. When considered to the above result, it is estimated that concrete mixed with wasted tire particles could be better used in conditions of compressive force rather than tensile force, and could also be used for structures with flexural strengths as well. In conclusion, higher strengths could be made using waste tire mix.

The Fundamental Study on Reusing Method of Ready-Mixed Concrete Sludge as Cement Binder (시멘트계 결합재로서 레미콘 슬러지의 재활용 방안에 관한 기초적 연구)

  • Park Jin-Sub;;;Kang Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.21-26
    • /
    • 2004
  • This study deals with the Hydrated Ability of the Ready-Mixed Concrete's Sludge which is the recycling technology of that sludge. The experiment gathers sludge from Ready-mixed factory. shatters these into pieces in dry condition and understands the differences between current using Portland cement. And then. this examines the possibility of the recycle as a bonding agent through the Compressive Strength and considers the recovery of the hydration. This experiment concludes the same Chemical Composition with the normal Portland cement. while. under the appropriate procedure in hydration recovery. this sludge can be used as the bonding agent in cement. The chemical composition of solid Remicon sludge shows that it has 1.8 times $SiO_2$ than the normal Portland cement. meaning lots of aggregate in Remicon sludge. Also. the specific gravity of Remicon sluge increases with the rise of Baking Temperature and has no difference between 2.77 and 2.94. The mortar flow used for combining the baking material of Remicon sludge does was not changed and is the highest between $750^{\circ}C{\cdot}120min\;and\;800^{\circ}C{\cdot}180min$. Additionally. the Compressive Strength increases with the age, certifying the same Hydrated Ability like cement and the best condition for hydration is $750^{\circ}C{\cdot}120min.$

  • PDF

Sustainable self compacting acid and sulphate resistance RAC by two stage mixing approaches

  • Rajhans, Puja;Kisku, Nishikant;Nayak, Sanket;Panda, Sarat Kumar
    • Advances in concrete construction
    • /
    • v.9 no.1
    • /
    • pp.55-70
    • /
    • 2020
  • In this research article, acid resistance, sulphate resistance and sorptivity of self compacted concrete (SCC) prepared from C&D waste have been discussed. To improve the above properties of self compacted recycled aggregate concrete (SCRAC) along with mechanical and durability properties, different two stage mixing approaches (TSMA and TSMAsfc) were followed. In the proposed two stage mixing approach (TSMAsfc), silica fume, a proportional amount of cement and a proportional amount of water were mixed in premix stage which fills the pores and cracks of recycled aggregate concrete (RAC). The concrete specimen prepared using above mixing approaches were immersed in 1% concentration of sulphuric acid (H2SO4) and magnesium sulphate (MgSO4) solution for 28, 90 and 180 days for evaluating the acid resistance of SCRAC. Experimental results concluded that the proposed two stage mixing approach (TSMAsfc) is most suitable for acid resistance and sulphate resistance in terms of weight loss and strength loss due to the elimination of pores and cracks in the interfacial transition zone (ITZ). In modified two stage mixing approach, the pores and cracks of recycled concrete aggregate (RCA) were filled up and make ITZs of SCRAC stronger. Microstructure analysis was carried out to justify the reason of improvement of ITZs by electron probe micro analyser (EPMA) analysis. X-ray mapping was also done to know the presence of strength contributing elements presents in the concrete sample. It was established that SCRAC with modified mixing approach have shown improved results in terms of acid resistance, sulphate resistance, sorptivity and mechanical properties.

Analysis of Damage Levels with Bond Performance between Reinforcement and Recycled Coarse Aggregate Concrete (순환굵은골재 콘크리트와 이형철근의 부착거동시 손상단계 분석)

  • Lee, Min-Jung;Yun, Hyun-Do;JAng, Yong-Heon;Choi, Ki-Sun;You, Young-Chan;Lee, Do-Heun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.863-866
    • /
    • 2008
  • One of the most important requirements for reinforced concrete constructions is the bond behavior between concrete and reinforcement. In this study, the positions (i.e., vertical, horizontal) and the locations (i.e., 225mm and 75mm) of reinforcement were considered as a main test parameter. The ready mixed recycled aggregate concrete concrete with specified strength of 21MPa was prepared with different replacement ratio(i.e 0%, 100%) of recycled coarse aggregate. From the test results, it was bond that under the same mix proportion (i.e., the mix proportions are the same, except for deformed bars position), the bond strength between the recycled coarse aggregate concrete and the reinforcement has obvious relation with reinforcement position. Also, the specimens of top position showed a lower bond stress than that provided in CEB-FIP Code.

  • PDF

Pore Structures and Mechanical Properties of Early Frost Damaged Concrete using Electric Arc Furnace Slag as Aggregate (초기동결 피해를 받은 전기로 산화 슬래그 혼입 콘크리트의 공극 구조 및 역학적 특성)

  • Lee, Won-Jun;Choi, So-Yeong;Kim, Il-Sun;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.68-77
    • /
    • 2020
  • The purpose of the paper is to evaluate the pore structure and mechanical properties of early frost damaged concrete using electric arc furnace slag as aggregate. From the results, when the concrete is exposed to frost damage at an early age, the peak point of pores 100 to 150 ㎛ in diameter were transferred into larger one. When the freezing duration is not exceeded 24 hours, it is possible that the pore distribution of under the 200 ㎛ is maintained and pore size of over 500 ㎛ is not formed, and, the freezing resistance of concrete using EFG could be improved. When BFS was mixed in concrete using EFG as coarse aggregate, the relative strength is higher than that of natural coarse aggregate. Meanwhile, the elastic modulus and resonance frequency did not change significantly due to the early frost damage as compared with the compressive strength. So, it is necessary to analyze the correlation between the experimental results in order to evaluate the performance degradation due to early frost damage.

Evaluation of Optimum Mixing Rate and Durability of Concrete Using Water Granulated Slag Fine Aggregate (수쇄 페로니켈슬래그 잔골재를 이용한 콘크리트의 최적 혼합률 및 내구 특성 평가)

  • Choi, Yun-Wang;Park, Man-Seok;Lee, Kwang-Myong;Bae, Su-Ho;Kim, Jee-Sang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.120-127
    • /
    • 2011
  • Recently, there are problems due to the exhaustion of natural aggregate resources, and strict restrictions. In this study, the possibility of using Water Granulated Ferro-Nickel slag as a substitutive material of fine aggregate is determined from the properties of mechanical and durability for the concrete that is made with Water Granulated Ferro-Nickel slag. According to the test results, when the mixing rate of Water Granulated Ferro-Nickel Slag aggregates concrete is adjusted, up to 50% of its aggregates by mixing rate can be mixed with general aggregates. The optimum mix ratio is considered to be 40%. The freezing and thawing resistance of Water Granulated Ferro-Nickel Slag aggregates concrete is identical to that of general aggregates concrete, while the carbonation resistance is found to be same as or lower than that of general aggregates concretes.

  • PDF

A Experimental Study on the Property of Lightweight Aggregate Concrete Using Hollow Micro Sphere (유리질 중공 미소 구체를 사용한 경량골재콘크리트의 특성에 관한 실험적 연구)

  • Kim, Sang Heon;Kim, Se Hwan;Park, Young Shin;Jeon, Hyun Gyu;Seo, Chee Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.2
    • /
    • pp.177-183
    • /
    • 2015
  • In this study, the thermal conductivity, physical and mechanical properties of lightweight aggregate concretes with hollow micro sphere(HMS) are experimentally examined as a basic research for the development of structural insulation concrete. As the results of this experiment, in the case of concrete mixed with HMS, the value of slump has been reduced, so it is found that the dosage of superplasticizer should be increased. As the replacement ratio of HMS increases, it has shown that the compressive strength is somewhat decreased due to the low interfacial adhesion strength of HMS. But the thermal conductivity is found to be greatly improved with the replacement ratio of HMS increases, the thermal conductivity of HMS shows the lower value of 68% at lightweight aggregate concrete and 32% of normal concrete. Also it is found that the compressive strength is decreased and thermal conductivity is increased as the water-cement ratio increases. The most outstanding for insulation performance is observed when using 20% of HMS and 50% of water-cement ratio.

Study on the prevention methods of radial cracks generated in artificial lightweight aggregate (인공경량골재 내부에 발생하는 방사형 균열의 억제 방법에 관한 연구)

  • Kang, Jimin;Kim, Kangduk;Kang, Seunggu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.5
    • /
    • pp.199-204
    • /
    • 2015
  • In this study, prevention methods of radial cracks generated inside of artificial lightweight aggregate made of reject ash and dredged soil were investigated. The reject ash and dredged soil had mixed with weight ratio of 7 : 3 and formed to spheric shape of 5~20 mm diameter, then, the aggregates were manufactured using flash sintering method at $1200^{\circ}C$ for 10 min. The formation of radial cracks in the aggregates were suppressed as the size of specimen decreased. Also, the addition of silica to aggregates had prevented generation of the radial cracks. As the size and the amount of silica powder added increased, the development of radial cracks was constrained. Therefore the artificial lightweight aggregate manufactured in this study expected to be applicable to many fields such as construction and environmental usages. Also it is expected to contribute greatly to increase the recycling rate of reject ash and dredged soil.