• Title/Summary/Keyword: mix ions doping

Search Result 2, Processing Time 0.014 seconds

Ce3+ sensitize RE3+ (RE=Dy, Tb, Eu, Sm) doped LaPO4 nanophosphor with white emission tunability

  • Phaomei, G.;Yaiphaba, N.
    • Advances in nano research
    • /
    • v.3 no.2
    • /
    • pp.55-66
    • /
    • 2015
  • Crystalline $Ce^{3+}$ co-doped $LaPO_4$:RE ($RE=Dy^{3+}$, $Tb^{3+}$, $Eu^{3+}$, $Sm^{3+}$) and mix doped rare earth ions of $Dy^{3+}$, $Tb^{3+}$ and $Eu^{3+}$ were prepared by the polyol method at $150^{\circ}C$. Strongly enhance luminescence intensity is obtained with the co-doping of $Ce^{3+}$ with $LaPO_4$:$Dy^{3+}$ and $LaPO_4$:$Tb^{3+}$ due to charge transfer (CT) occurring from $Ce^{3+}$ to $Dy^{3+}$ and $Ce^{3+}$ to $Tb^{3+}$, where as there is no significant changes in luminescence intensity of $Ce^{3+}$ co-doped $Eu^{3+}$ and $Sm^{3+}$ doped $LaPO_4$ samples. The luminescence color can be tuned from green to white by varying the excitation wavelength for the mix ions $Ce^{3+}$, $Dy^{3+}$, $Tb^{3+}$ and $Eu^{3+}$ doped with $LaPO_4$.

Chemical Prelithiation Toward Lithium-ion Batteries with Higher Energy Density (리튬이온전지 고에너지밀도 구현을 위한 화학적 사전리튬화 기술)

  • Hong, Jihyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.77-92
    • /
    • 2021
  • The energy density of lithium-ion batteries (LIBs) determines the mileage of electric vehicles. For increasing the energy density of LIBs, it is necessary to develop high-capacity active materials that can store more lithium ions within constrained weight. The rapid progress made in cathode technology has realized the utilization of the near-theoretical capacity of cathode materials. In contrast, commercial LIBs have still exploited graphite as active material in anodes since the 1990s. The most promising way to increase anodes' capacity is to mix high-capacity and long-cycle-life silicon oxides (SiOx) with graphite. However, the low initial Coulombic efficiency (ICE) of SiOx limits its content below 15 wt%, impeding the capacity increase in anodes. To address this issue, various prelithiation techniques have been proposed, which can improve the ICE of high-capacity anode materials. In this review paper, we introduce the principles and expected effects of prelithiation techniques reported so far. According to the reaction mechanisms, the strategies are categorized. Mainly, we focus on the recent progress of solution-based chemical prelithiation methods with commercial viability, of which lithiation reaction occurs homogeneously at liquid-solid interfaces. We believe that developing a cost-effective and mass-scalable prelithiation process holds the key to dominating the anode market for next-generation LIBs.