• 제목/요약/키워드: mitotic stress

검색결과 11건 처리시간 0.024초

Integrative Profiling of Alternative Splicing Induced by U2AF1 S34F Mutation in Lung Adenocarcinoma Reveals a Mechanistic Link to Mitotic Stress

  • Kim, Suyeon;Park, Charny;Jun, Yukyung;Lee, Sanghyuk;Jung, Yeonjoo;Kim, Jaesang
    • Molecules and Cells
    • /
    • 제41권8호
    • /
    • pp.733-741
    • /
    • 2018
  • Mutations in spliceosome components have been implicated in carcinogenesis of various types of cancer. One of the most frequently found is U2AF1 S34F missense mutation. Functional analyses of this mutation have been largely limited to hematological malignancies although the mutation is also frequently seen in other cancer types including lung adenocarcinoma (LUAD). We examined the impact of knockdown (KD) of wild type (wt) U2AF1 and ectopic expression of two splice variant S34F mutant proteins in terms of alternative splicing (AS) pattern and cell cycle progression in A549 lung cancer cells. We demonstrate that induction of distinct AS events and disruption of mitosis at distinct sub-stages result from KD and ectopic expression of the mutant proteins. Importantly, when compared with the splicing pattern seen in LUAD patients with U2AF1 S34F mutation, ectopic expression of S34F mutants but not KD was shown to result in common AS events in several genes involved in cell cycle progression. Our study thus points to an active role of U2AF1 S34F mutant protein in inducing cell cycle dysregulation and mitotic stress. In addition, alternatively spliced genes which we describe here may represent novel potential markers of lung cancer development.

Elevated level of PLRG1 is critical for the proliferation and maintenance of genome stability of tumor cells

  • Hyunji Choi;Moonkyung Kang;Kee-Ho Lee;Yeon-Soo Kim
    • BMB Reports
    • /
    • 제56권11호
    • /
    • pp.612-617
    • /
    • 2023
  • Pleiotropic regulator 1 (PLRG1), a highly conserved element in the spliceosome, can form a NineTeen Complex (NTC) with Prp19, SPF27, and CDC5L. This complex plays crucial roles in both pre-mRNA splicing and DNA repair processes. Here, we provide evidence that PLRG1 has a multifaceted impact on cancer cell proliferation. Comparing its expression levels in cancer and normal cells, we observed that PLRG1 was upregulated in various tumor tissues and cell lines. Knockdown of PLRG1 resulted in tumor-specific cell death. Depletion of PLRG1 had notable effects, including mitotic arrest, microtubule instability, endoplasmic reticulum (ER) stress, and accumulation of autophagy, ultimately culminating in apoptosis. Our results also demonstrated that PLRG1 downregulation contributed to DNA damage in cancer cells, which we confirmed through experimental validation as DNA repair impairment. Interestingly, when PLRG1 was decreased in normal cells, it induced G1 arrest as a self-protective mechanism, distinguishing it from effects observed in cancer cells. These results highlight multifaceted impacts of PLRG1 in cancer and underscore its potential as a novel anti-cancer strategy by selectively targeting cancer cells.

세포 노화에 있어서 복제 세네센스 현상과 산화적 스트레스의 영향 (Replicative Senescence in Cellular Aging and Oxidative Stress)

  • 박영철
    • Toxicological Research
    • /
    • 제19권3호
    • /
    • pp.161-172
    • /
    • 2003
  • Explanted mammalian cells perform a limited number of cell division in vitro and than are arrested in a state known as replicative senescence. Such cells are irreversibly blocked, mostly in the G1 phase of cell cycle, and are no longer sensitive to growth factor stimulation. Thus replicative senescence is defined as a permanent and irreversible loss of replicative potential of cells. For this characteristic, replicative senescence seems to evolve to protect mammalian organism from cancer. However, senescence also contributes to aging. It seems to decrease with age of the cell donor and, as a form of cell senescence, is thought to underlie the aging process. Extensive evidence supports the idea that progressive telomere loss contributes to the phenomenon of cell senescence. Telomeres are repetitive structures of the sequence (TTAGGG)n at the ends of linear chromosomes. It has been shown that the average length of telomere repeats in human somatic cells decreases by 30∼200 bp with each cell division. It is generally believed that when telomeres reach a critical length, a signal is activated to initiate the senescent program. This has given rise to the hypothesis that telomeres act as mitotic clocks to regulate lifespan. One proposes that cumulative oxidative stress, mainly reactive oxygen species generated from mitochondria, may mainly cause telomere shortening, accelerating aging. Here, the biological importance and mechanism of replicative senescence were briefly reviewed. Also it was summarized that how oxidative stress affects replicative senescence and telomere shortening.

Anticancer Drugs at Low Concentrations Upregulate the Activity of Natural Killer Cell

  • Hyeokjin Kwon;Myeongguk Jeong;Yeeun Kim;Go-Eun Choi
    • 대한의생명과학회지
    • /
    • 제29권3호
    • /
    • pp.178-183
    • /
    • 2023
  • Natural killer (NK) cells are innate cytotoxic lymphoid cells that actively prevent neoplastic development, growth, and metastatic dissemination in a process called cancer immunosurveillance. Regulation of the cytotoxic activity of NK cells relies on integrated interactions between inhibitory receptors and numerous activating receptors that act in tandem to eliminate tumor cells efficiently. Conventional chemotherapy is designed to produce an anti-proliferative or cytotoxic effect on early tumor cell division. Therapies designed to kill cancer cells and simultaneously maintain host anti-tumor immunity are attractive strategies for controlling tumor growth. Depending on the drug and dose used, several chemotherapeutic agents cause DNA damage and cancer cell death through apoptosis, immunogenic cell death, or other forms of non-killing (i.e., mitotic catastrophe, senescence, autophagy). Among stress-induced immunostimulatory proteins, changes in the expression levels of NK cell activating and inhibitory ligands and tumor cell death receptors play an important role in the detection and elimination by innate immune effectors including NK cells. Therefore, we will address how these cytotoxic lymphocytes sense and respond to high and low concentrations of drug-induced stress to the drug cisplatin, among the various types of drugs that contribute to their anticancer activity.

Members of the ran family of stress-inducible small GTP-binding proteins are differentially regulated in sweetpotato plants

  • Kim, Young-Hwa;Huh, Gyung Hye
    • Journal of Plant Biotechnology
    • /
    • 제40권1호
    • /
    • pp.9-17
    • /
    • 2013
  • Ran is a small GTP-binding protein that binds and subsequently hydrolyzes GTP. The functions of Ran in nuclear transport and mitotic progression are well conserved in plants and animals. In animal cells, stress treatments cause Ran relocalization and slowing of nuclear transport, but the role of Ran proteins in plant cells exposed to stress is still unclear. We have therefore compared Ran genes from three EST libraries construed from different cell types of sweetpotato and the distribution pattern of Ran ESTs differed according to cell type. We further characterized two IbRan genes. IbRan1 is a specific EST to the suspension cells and leaf libraries, and IbRan2 is specific EST to the root library. IbRan1 showed 94.6 % identity with IbRan2 at the amino acid level, but the C-terminal region of IbRan1 differed from that of IbRan2. These two genes showed tissue-specific differential regulation in wounded tissues. Chilling stress induced a similar expression pattern in both IbRan genes in the leaves and petioles, but they were differently regulated in the roots. Hydrogen peroxide treatment highly stimulated IbRan2 mRNA expression in the leaves and petioles, but had no significant effect on IbRan1 gene expression. These results showed that the transcription of these two IbRan genes responds differentially to abiotic stresses and that they are subjected to tissue-specific regulation. Plant Ran-type small G-proteins are a multigenic family, and the characterization of each Ran genes under various environmental stresses will contribute toward our understanding of the distinctive function of each plant Ran isoform.

Polo-like kinase-1 in DNA damage response

  • Hyun, Sun-Yi;Hwan, Hyo-In;Jang, Young-Joo
    • BMB Reports
    • /
    • 제47권5호
    • /
    • pp.249-255
    • /
    • 2014
  • Polo-like kinase-1 (Plk1) belongs to a family of serine-threonine kinases and plays a critical role in mitotic progression. Plk1 involves in the initiation of mitosis, centrosome maturation, bipolar spindle formation, and cytokinesis, well-reported as traditional functions of Plk1. In this review, we discuss the role of Plk1 during DNA damage response beyond the functions in mitotsis. When DNA is damaged in cells under various stress conditions, the checkpoint mechanism is activated to allow cells to have enough time for repair. When damage is repaired, cells progress continuously their division, which is called checkpoint recovery. If damage is too severe to repair, cells undergo apoptotic pathway. If damage is not completely repaired, cells undergo a process called checkpoint adaptation, and resume cell division cycle with damaged DNA. Plk1 targets and regulates many key factors in the process of damage response, and we deal with these subjects in this review.

2-deoxy-D-Glucose Synergizes with Doxorubicin or L-Buthionine Sulfoximine to Reduce Adhesion and Migration of Breast Cancer Cells

  • Mustafa, Ebtihal H;Mahmoud, Huda T;Al-Hudhud, Mariam Y;Abdalla, Maher Y;Ahmad, Iman M;Yasin, Salem R;Elkarmi, Ali Z;Tahtamouni, Lubna H
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권8호
    • /
    • pp.3213-3222
    • /
    • 2015
  • Background: Cancer metastasis depends on cell motility which is driven by cycles of actin polymerization and depolymerization. Reactive oxygen species (ROS) and metabolic oxidative stress have long been associated with cancer. ROS play a vital role in regulating actin dynamics that are sensitive to oxidative modification. The current work aimed at studying the effects of sub-lethal metabolic oxidative stress on actin cytoskeleton, focal adhesion and cell migration. Materials and Methods: T47D human breast cancer cells were treated with 2-deoxy-D-glucose (2DG), L-buthionine sulfoximine (BSO), or doxorubicin (DOX), individually or in combination, and changes in intracellular total glutathione and malondialdehyde (MDA) levels were measured. The expression of three major antioxidant enzymes was studied by immunoblotting, and cells were stained with fluorescent-phalloidin to evaluate changes in F-actin organization. In addition, cell adhesion and degradation ability were measured. Cell migration was studied using wound healing and transwell migration assays. Results: Our results show that treating T47D human breast cancer cells with drug combinations (2DG/BSO, 2DG/DOX, or BSO/DOX) decreased intracellular total glutathione and increased oxidized glutathione, lipid peroxidation, and cytotoxicity. In addition, the drug combinations caused a reduction in cell area and mitotic index, prophase arrest and a decreased ability to form invadopodia. The formation of F-actin aggregates was increased in treated T47D cells. Moreover, combination therapy reduced cell adhesion and the rate of cell migration. Conclusions: Our results suggest that exposure of T47D breast cancer cells to combination therapy reduces cell migration via effects on metabolic oxidative stress.

Galvani전류가 백서의 하악골 성장에 미치는 영향에 관한 실험적 연구 (AN EXPERIMENTAL STUDY ON THE EFFECT OF THE GALVANIC CURRENT ON THE MANDIBULAR GROWTH IN RAT)

  • 양상덕;서정훈
    • 대한치과교정학회지
    • /
    • 제18권1호
    • /
    • pp.189-207
    • /
    • 1988
  • In almost all biologic systems, mechanically induced electric charge separation is a fundamental phenomenon. Since the hypothesis was established that the generation of electric potentials in bone by mechanical stress including muscular force might control the activity in bone by mechanical stress including muscular force might control the activity of osseous cells and their biopolymeric byproduct, the concept of electrically mediate growth mechanism, which involves biological growth and bone remodeling by any means, in living systems has been applied clinically and experimentally to orthopedic fracture repair, the regulation of orthodontic tooth movement, epiphyseal cartilage regeneration, etc. On the other hand, recent numerous research data available show apparently that the mandibular condyle has the characteristics of growth center as well as growth site. In addition, there exists a considerable difference of opinion as to the role of external pterygoid muscle in condylar growth. In view of these evidences, this. experiment was performed to investigate the effect of the galavic current on the growth of the mandible and condyle for elucidating the nature of condylar growth. The bimetallic device was composed of silver and platinum electrode connected with resistor (3.9 Mohm), which was expected to produce galvanic current of 23.6 nA according to the galvanic principle. The 25 Sprague-Dawley rats were divided into two group, 2 week group comprising 8 animals exposed to satanic current for 2 weeks and 3 control animals not exposed for 2 weeks, 4 week group comprising 10 animals in experimental group and 4 animals in control group applied for 4 weeks respectively. The experimental rats were subjected to application of the galvanic current invasively to codylar head surface and the control groups with sham electrode. On the basis of anatomic and histologic data from the mandibular condyle of experimental and control group, the following results were obtained. 1. After 2 weeks, there was no increase of mandibular size in experimental group over that of the control group. 2. After 4 weeks, the size of the condylar head was larger in experimental group than that of the control. 3. In 2 week group, the thickness of the mitotic compartment and hypertrophic chondroblastic layer was increased in experimental group. 4. In 4 week group, the number and the size of the hypertrophic chondroblasts were increased significantly on experimental group over that of the control group. 5. The application of the satanic current caused an increase in chondrocytic hypertrophy and intercellular matrix in both groups.

  • PDF

SCK 선암세포주에서 방사선 조사에 의해 유도되는 Apoptosis에 미치는 암유전자의 발현 (The Expression of Oncogenes on the Radiation-induced Apoptosis in SCK Mammary Adenocarcinoma Cell Line)

  • 이헝식;박홍규;문창우;윤선민;허원주;정수진;정민호;이상화
    • Radiation Oncology Journal
    • /
    • 제17권1호
    • /
    • pp.70-77
    • /
    • 1999
  • 목적 : 연구자들은 배양 배지의 산성환경이 SCK 선암세포에서 apoptosis를 유도하는 것과 산성환경이 SCK 선암 세포주에서 방사선에 의해 유도되는 apoptosis를 억제시킨다고 관찰하고 apoptosis 관련 유전자들인 p53, p21/WAF/CIP, Bcl-2 및 Bax 들의 발현과 배양 배지 pH 환경과의 연관성을 관찰하였다. 대상 및 방법 : SCK 선암 세포주를 체외 방사선 조사기를 이용하여 방사선 120Gy 조사 후 규정된 시간에 DNA fragmentation을 전기 영동으로 관찰하였다. 실험 조작으로 apoptosis가 유발된 세포군을 정량적으로 분석하고 세포주기 분석을 위하여 FACScan을 이용하였다. Apoptosis 관련 유전자들인 p53, P21/WAF/CIP, Bcl-2 및 Bax 들의 발현은 western blot으로 관찰하였다. 결과 : SCK 선암 세포주에서 방사선에 의해 유도되는 apoptosis는 산성환경(pH 6.6)에서는 apoptosis의 유발이 억제 된다는 사실을 관찰할 수 있었다. 세포주기 분석에서는 방사선조사 후 apoptosis가 뚜렷히 관찰된 pH 7.5 배양 배지 조건에 비하여 pH 6.6 배양 배지 조건에서 현저한 G2/M arrest가 관찰 되었다. apoptosis 관련 유전단백 분석에서는 Bcl-2 유전단백은 두 군 공히 발현의 차이를 관찰할 수 없었고, p53 및 p21은 pH 7.5 배양 배지 환경에서 뚜렷한 발현의 증가를 관찰하였고, p21은 pH 6.6 배양 배지 환경에서는 발현을 관찰할 수 없었다. Bax는 pH 7.5 배양 배지 환경에서 pH 6.6 환경에 비해 경미한 발현의 증가 및 지속성을 관찰하였다. 결론 . 저자들은 SCK 선암 세포주를 대상으로 방사선조사 후 상이한 pH 7.5 와 6.6의 배양 배지 조건에 따른 apoptosis의 관찰에 영향을 주는 유전자 발현에 관한 연구에서 Bcl-2 family의 발현에 비해 세포주기 관련 유전단백들인 p53 발현과 이에 따른 p21의 발현차이가 확연한 p53-dependent apoptotic pathway를 확인하였다. 방사선 조사 후 pH 6.6의 배양 배지 조건에서의 apoptosis 현상을 관찰할 수 없었던 이유는 pH 6.6의 경우 50-60$\%$의 세포가 G2/M arrest에서 세포주기를 순환하지 못함을 확인하였기에 G2/M arrest의 해지와 더불어 순환되는 세포주기의 결과에 따른 post-mitotic apoptosis 현상의 장애로 추론하였다.

  • PDF

Feeder Free 상태에서 배양된 인간 배아 줄기세포를 이용한 중간엽 줄기세포 분화 및 단백체학을 이용한 골수 유래 중간엽 줄기세포와의 비교 (Derivation of MSC Like-Cell Population from Feeder Free Cultured hESC and Their Proteomic Analysis for Comparison Study with BM-MSC)

  • 박순정;전영주;김주미;선정민;채정일;정형민
    • Reproductive and Developmental Biology
    • /
    • 제34권3호
    • /
    • pp.143-151
    • /
    • 2010
  • Pluripotency of human embryonic stem cell (hESC) is one of the most valuable ability of hESCs for applying cell therapy field, but also showing side effect, for example teratoma formation. When transplant multipotent stem cell, such as mesnchymal stem cell (MSC) which retains similar differentiation ability, they do not form teratoma in vivo, but there exist limitation of cellular source supply. Accordingly, differentiation of hESC into MSC will be promising cellular source with strong points of both hESC and MSC line. In this study, we described the derivation of MSC like cell population from feeder free cultured hESC (hESC-MSC) using direct differentiation system. Cells population, hESC-MSC and bone marrow derived MSC (BM-MSC) retained similar characteristics in vitro, such as morphology, MSC specific marker expression and differentiation capacity. At the point of differentiation of both cell populations, differentiation rate was slower in hESC-MSC than BM-MSC. As these reason, to verify differentially expressed molecular condition of both cell population which bring out different differentiation rate, we compare the molecular condition of hESC-MSC and BM-MSC using 2-D proteomic analysis tool. In the proteomic analysis, we identified 49 differentially expressed proteins in hESC-MSC and BM-MSC, and they involved in different biological process such as positive regulation of molecular function, biological process, cellular metabolic process, nitrogen compound metabolic process, macromolecule metabolic process, metabolic process, molecular function, and positive regulation of molecular function and regulation of ubiquitin protein ligase activity during mitotic cell cycle, cellular response to stress, and RNA localization. As the related function of differentially expressed proteins, we sought to these proteins were key regulators which contribute to their differentiation rate, developmental process and cell proliferation. Our results suggest that the expressions of these proteins between the hESC-MSC and BM-MSC, could give to us further evidence for hESC differentiation into the mesenchymal stem cell is associated with a differentiation factor. As the initial step to understand fundamental difference of hESC-MSC and BM-MSC, we sought to investigate different protein expression profile. And the grafting of hESC differentiation into MSC and their comparative proteomic analysis will be positively contribute to cell therapy without cellular source limitation, also with exact background of their molecular condition.