Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.5.061

Polo-like kinase-1 in DNA damage response  

Hyun, Sun-Yi (Department of Nanobiomedical Science & BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University)
Hwan, Hyo-In (Department of Nanobiomedical Science & BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University)
Jang, Young-Joo (Department of Nanobiomedical Science & BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University)
Publication Information
BMB Reports / v.47, no.5, 2014 , pp. 249-255 More about this Journal
Abstract
Polo-like kinase-1 (Plk1) belongs to a family of serine-threonine kinases and plays a critical role in mitotic progression. Plk1 involves in the initiation of mitosis, centrosome maturation, bipolar spindle formation, and cytokinesis, well-reported as traditional functions of Plk1. In this review, we discuss the role of Plk1 during DNA damage response beyond the functions in mitotsis. When DNA is damaged in cells under various stress conditions, the checkpoint mechanism is activated to allow cells to have enough time for repair. When damage is repaired, cells progress continuously their division, which is called checkpoint recovery. If damage is too severe to repair, cells undergo apoptotic pathway. If damage is not completely repaired, cells undergo a process called checkpoint adaptation, and resume cell division cycle with damaged DNA. Plk1 targets and regulates many key factors in the process of damage response, and we deal with these subjects in this review.
Keywords
Cell cycle; DNA damage checkpoint; Polo-like kinase-1; p53;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liu, X., Lei, M. and Erikson, R. L. (2006) Normal cells, but not cancer cells, survive severe Plk1 depletion. Mol. Cell Biol. 26, 2093-2108.   DOI   ScienceOn
2 Lu, B., Mahmud, H., Maass, A. H., Yu, B., van Gilst, W. H., de Boer, R. A. and Sillje, H. H. (2010) The Plk1 inhibitor BI 2536 temporarily arrests primary cardiac fibroblasts in mitosis and generates aneuploidy in vitro. PLoS One 5, e12963.   DOI   ScienceOn
3 Yuan, J., Sanhaji, M., Kramer, A., Reindl, W., Hofmann, M., Kreis, N. N., Zimmer, B., Berg, T. and Strebhardt, K. (2011) Polo-box domain inhibitor poloxin activates the spindle assembly checkpoint and inhibits tumor growth in vivo. Am. J. Pathol. 179, 2091-2099.   DOI   ScienceOn
4 Watanabe, N., Sekine, T., Takagi, M., Iwasaki, J., Imamoto, N., Kawasaki, H. and Osada, H. (2009) Deficiency in chromosome congression by the inhibition of Plk1 polo box domain-dependent recognition. J. Biol. Chem. 284, 2344-2353.   DOI   ScienceOn
5 Sanhaji, M., Kreis, N. N., Zimmer, B., Berg, T., Louwen, F. and Yuan, J. (2012) p53 is not directly relevant to the response of Polo-like kinase 1 inhibitors. Cell Cycle. 11, 543-553.   DOI   ScienceOn
6 Liu, X. S., Song, B. and Liu, X. (2010) The substrates of Plk1, beyond the functions in mitosis. Cell 1, 999-1010.
7 Mandal, R. and Strebhardt, K. Plk1: unexpected roles in DNA replication. Cell Res. 23, 1251-1253.
8 Lowery, D. M., Clauser, K. R., Hjerrild, M., Lim, D., Alexander, J., Kishi, K., Ong, S. E., Gammeltoft, S., Carr, S. A. and Yaffe, M. B. (2007) Proteomic screen defines the Polo-box domain interactome and identifies Rock2 as a Plk1 substrate. EMBO J. 26, 2262-2273.   DOI   ScienceOn
9 Barr, F. A., Sillje, H. H. and Nigg, E. A. (2004) Polo-like kinases and the orchestration of cell division. Nat. Rev. Mol. Cell Biol. 5, 429-440.   DOI   ScienceOn
10 Sunkel, C. E. and Glover, D. M. (1988) Polo, a mitotic mutant of Drosophila displaying abnormal spindle poles. J. Cell Sci. 89 (Pt 1), 25-38.
11 Llamazares, S., Moreira, A., Tavares, A., Girdham, C., Spruce, B. A., Gonzalez, C., Karess, R. E., Glover, D. M. and Sunkel, C. E. (1991) Polo encodes a protein kinase homolog required for mitosis in Drosophila. Genes. Dev. 5, 2153-2165.   DOI
12 Lee, K. S., Grenfell, T. Z., Yarm, F. R. and Erikson, R. L. (1998) Mutation of the polo-box disrupts localization and mitotic functions of the mammalian polo kinase Plk. Proc. Natl. Acad. Sci. U.S.A. 95, 9301-9306.   DOI   ScienceOn
13 Jang, Y. J., Ma, S., Terada, Y. and Erikson, R. L. (2002) Phosphorylation of threonine 210 and the role of serine 137 in the regulation of mammalian polo-like kinase. J. Biol. Chem. 277, 44115-44120.   DOI   ScienceOn
14 Takai, N., Hamanaka, R., Yoshimatsu, J. and Miyakawa, I. (2005) Polo-like kinases (Plks) and cancer. Oncogene 24, 287-291.   DOI   ScienceOn
15 van de Weerdt, B. C., Littler, D. R., Klompmaker, R., Huseinovic, A., Fish, A., Perrakis, A. and Medema, R. H. (2008) Polo-box domains confer target specificity to the Polo-like kinase family. Biochim. Biophys. Acta. 1783, 1015-1022.   DOI   ScienceOn
16 Glover, D. M., Hagan, I. M. and Tavares, A. A. (1998) Polo-like kinases: a team that plays throughout mitosis. Genes Dev. 12, 3777-3787.   DOI   ScienceOn
17 van de Weerdt, B. C. and Medema, R. H. (2006) Polo-like kinases: a team in control of the division. Cell Cycle. 5, 853-864.   DOI   ScienceOn
18 Smits, V. A., Klompmaker, R., Arnaud, L., Rijksen, G., Nigg, E. A. and Medema, R. H. (2000) Polo-like kinase-1 is a target of the DNA damage checkpoint. Nat. Cell Biol. 2, 672-676.   DOI   ScienceOn
19 Mao, Z., Bozzella, M., Seluanov, A. and Gorbunova, V. (2008) Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair (Amst) 7, 1765-1771.   DOI   ScienceOn
20 Lieber, M. R. (2008) The mechanism of human nonhomologous DNA end joining. J. Biol. Chem. 283, 1-5.   DOI   ScienceOn
21 Doherty, A. J. and Jackson, S. P. (2001) DNA repair: how Ku makes ends meet. Curr. Biol. 11, R920-924.   DOI   ScienceOn
22 Featherstone, C. and Jackson, S. P. (1999) Ku, a DNA repair protein with multiple cellular functions? Mutat. Res. 434, 3-15.   DOI   ScienceOn
23 Burma, S. and Chen, D. J. (2004) Role of DNA-PK in the cellular response to DNA double-strand breaks. DNA Repair (Amst) 3, 909-918.   DOI   ScienceOn
24 Fernandez-Capetillo, O., Lee, A., Nussenzweig, M. and Nussenzweig, A. (2004) H2AX: the histone guardian of the genome. DNA Repair (Amst) 3, 959-967.   DOI   ScienceOn
25 Calsou, P., Delteil, C., Frit, P., Drouet, J. and Salles, B. (2003) Coordinated assembly of Ku and p460 subunits of the DNA-dependent protein kinase on DNA ends is necessary for XRCC4-ligase IV recruitment. J. Mol. Biol. 326, 93-103.   DOI   ScienceOn
26 Helleday, T. (2003) Pathways for mitotic homologous recombination in mammalian cells. Mutat. Res. 532, 103-115.   DOI   ScienceOn
27 de Jager, M., van Noort, J., van Gent, D. C., Dekker, C., Kanaar, R. and Wyman, C. (2001) Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol. Cell 8, 1129-1135.   DOI   ScienceOn
28 Stucki, M., Clapperton, J. A., Mohammad, D., Yaffe, M. B., Smerdon, S. J. and Jackson, S. P. (2005) MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123, 1213-1226.   DOI   ScienceOn
29 Fernandez-Capetillo, O., Celeste, A. and Nussenzweig, A. (2003) Focusing on foci: H2AX and the recruitment of DNA-damage response factors. Cell Cycle. 2, 426-427.
30 Nimonkar, A. V., Ozsoy, A. Z., Genschel, J., Modrich, P. and Kowalczykowski, S. C. (2008) Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. Proc. Natl. Acad. Sci. U.S.A. 105, 16906-16911.   DOI   ScienceOn
31 Wyman, C. and Kanaar, R. (2004) Homologous recombination: down to the wire. Curr. Biol. 14, R629-631.   DOI   ScienceOn
32 West, S. C. (2003) Molecular views of recombination proteins and their control. Nat. Rev. Mol. Cell Biol. 4, 435-445.   DOI   ScienceOn
33 Bartek, J. and Lukas, J. (2001) Pathways governing G1/S transition and their response to DNA damage. FEBS Lett. 490, 117-122.   DOI   ScienceOn
34 Adams, K. E., Medhurst, A. L., Dart, D. A. and Lakin, N. D. (2006) Recruitment of ATR to sites of ionising radiation- induced DNA damage requires ATM and components of the MRN protein complex. Oncogene 25, 3894-3904.   DOI   ScienceOn
35 Baumann, P., Benson, F. E. and West, S. C. (1996) Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell 87, 757-766.   DOI   ScienceOn
36 McIlwraith, M. J., Vaisman, A., Liu, Y., Fanning, E., Woodgate, R. and West, S. C. (2005) Human DNA polymerase eta promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol. Cell 20, 783-792.   DOI   ScienceOn
37 Qin, B., Gao, B., Yu, J., Yuan, J. and Lou, Z. (2013) Ataxia telangiectasia-mutated- and Rad3-related protein regulates the DNA damage-induced G2/M checkpoint through the Aurora A cofactor Bora protein. J. Biol. Chem. 288, 16139-16144.   DOI   ScienceOn
38 Falck, J., Mailand, N., Syljuasen, R. G., Bartek, J. and Lukas, J. (2001) The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410, 842-847.   DOI   ScienceOn
39 Seki, A., Coppinger, J. A., Jang, C. Y., Yates, J. R. and Fang, G. (2008) Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry. Science 320, 1655-1658.   DOI   ScienceOn
40 Donzelli, M. and Draetta, G. F. (2003) Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep. 4, 671-677.   DOI   ScienceOn
41 Morrison, C. and Rieder, C. L. (2004) Chromosome damage and progression into and through mitosis in vertebrates. DNA Repair (Amst) 3, 1133-1139.   DOI   ScienceOn
42 Kumagai, A. and Dunphy, W. G. (2000) Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Mol. Cell 6, 839-849.   DOI   ScienceOn
43 Mamely, I., van Vugt, M. A., Smits, V. A., Semple, J. I., Lemmens, B., Perrakis, A., Medema, R. H. and Freire, R. (2006) Polo-like kinase-1 controls proteasome-dependent degradation of Claspin during checkpoint recovery. Curr. Biol. 16, 1950-1955.   DOI   ScienceOn
44 Yata, K., Lloyd, J., Maslen, S., Bleuyard, J. Y., Skehel, M., Smerdon, S. J. and Esashi, F. (2012) Plk1 and CK2 act in concert to regulate Rad51 during DNA double strand break repair. Mol. Cell 45, 371-383.   DOI   ScienceOn
45 Giunta, S. and Jackson, S. P. (2011) Give me a break, but not in mitosis: the mitotic DNA damage response marks DNA double-strand breaks with early signaling events. Cell Cycle. 10, 1215-1221.   DOI
46 Lee, H. J., Hwang, H. I. and Jang, Y. J. (2010) Mitotic DNA damage response: Polo-like kinase-1 is dephosphorylated through ATM-Chk1 pathway. Cell Cycle. 9, 2389-2398.   DOI
47 Hyun, S. Y., Rosen, E. M. and Jang, Y. J. (2012) Novel DNA damage checkpoint in mitosis: Mitotic DNA damage induces re-replication without cell division in various cancer cells. Biochem. Biophys. Res. Commun. 423, 593-599.   DOI   ScienceOn
48 Jang, Y. J., Ji, J. H., Choi, Y. C., Ryu, C. J. and Ko, S. Y. (2007) Regulation of Polo-like kinase 1 by DNA damage in mitosis. Inhibition of mitotic PLK-1 by protein phosphatase 2A. J. Biol. Chem. 282, 2473-2482.   DOI   ScienceOn
49 Storchova, Z. and Pellman, D. (2004) From polyploidy to aneuploidy, genome instability and cancer. Nat. Rev. Mol. Cell Biol. 5, 45-54.   DOI   ScienceOn
50 Tsvetkov, L. and Stern, D. F. (2005) Phosphorylation of Plk1 at S137 and T210 is inhibited in response to DNA damage. Cell Cycle. 4, 166-171.   DOI
51 Brown, C. J., Lain, S., Verma, C. S., Fersht, A. R. and Lane, D. P. (2009) Awakening guardian angels: drugging the p53 pathway. Nat. Rev. Cancer 9, 862-873.   DOI   ScienceOn
52 Vousden, K. H. and Lu, X. (2002) Live or let die: the cell's response to p53. Nat. Rev. Cancer 2, 594-604.   DOI   ScienceOn
53 Cheng, Q. and Chen, J. (2010) Mechanism of p53 stabilization by ATM after DNA damage. Cell Cycle. 9, 472-478.   DOI
54 Tibbetts, R. S., Brumbaugh, K. M., Williams, J. M., Sarkaria, J. N., Cliby, W. A., Shieh, S. Y., Taya, Y., Prives, C. and Abraham, R. T. (1999) A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 13, 152-157.   DOI   ScienceOn
55 Chehab, N. H., Malikzay, A., Appel, M. and Halazonetis, T. D. (2000) Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev. 14, 278-288.
56 Shieh, S. Y., Ahn, J., Tamai, K., Taya, Y. and Prives, C. (2000) The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev. 14, 289-300.
57 Appella, E. (2001) Modulation of p53 function in cellular regulation. Eur. J. Biochem. 268, 2763.   DOI   ScienceOn
58 Meek, D. W. (2009) Tumour suppression by p53: a role for the DNA damage response? Nat. Rev. Cancer 9, 714-723.   DOI
59 Lanni, J. S. and Jacks, T. (1998) Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol. Cell Biol. 18, 1055-1064.
60 Attardi, L. D. and Jacks, T. (1999) The role of p53 in tumour suppression: lessons from mouse models. Cell Mol. Life. Sci. 55, 48-63.   DOI   ScienceOn
61 Minn, A. J., Boise, L. H. and Thompson, C. B. (1996) Expression of Bcl-xL and loss of p53 can cooperate to overcome a cell cycle checkpoint induced by mitotic spindle damage. Genes Dev. 10, 2621-2631.   DOI   ScienceOn
62 Evans, S. C. and Lozano, G. (1997) The Li-Fraumeni syndrome: an inherited susceptibility to cancer. Mol. Med. Today 3, 390-395.   DOI   ScienceOn
63 Zhou, Z., Cao, J. X., Li, S. Y., An, G. S., Ni, J. H. and Jia, H. T. (2013) p53 Suppresses E2F1-dependent PLK1 expression upon DNA damage by forming p53-E2F1-DNA complex. Exp. Cell Res. 319, 3104-3115.   DOI   ScienceOn
64 Lin, Y. C., Sun, S. H. and Wang, F. F. (2011) Suppression of Polo like kinase 1 (PLK1) by p21 (Waf1) mediates the p53-dependent prevention of caspase-independent mitotic death. Cell Signal. 23, 1816-1823.   DOI   ScienceOn
65 Pandit, B., Halasi, M. and Gartel, A. L. (2009) p53 negatively regulates expression of FoxM1. Cell Cycle. 8, 3425-3427.   DOI
66 Bartek, J. and Lukas, J. (2007) DNA damage checkpoints: from initiation to recovery or adaptation. Curr. Opin. Cell Biol. 19, 238-245.   DOI   ScienceOn
67 van Vugt, M. A., Bras, A. and Medema, R. H. (2004) Polo-like kinase-1 controls recovery from a G2 DNA damage- induced arrest in mammalian cells. Mol. Cell 15, 799-811.   DOI   ScienceOn
68 Yang, X., Li, H., Zhou, Z., Wang, W. H., Deng, A., Andrisani, O. and Liu, X. (2009) Plk1-mediated phosphorylation of Topors regulates p53 stability. J. Biol. Chem. 284, 18588-18592.   DOI   ScienceOn
69 Ando, K., Ozaki, T., Yamamoto, H., Furuya, K., Hosoda, M., Hayashi, S., Fukuzawa, M. and Nakagawara, A. (2004) Polo-like kinase 1 (Plk1) inhibits p53 function by physical interaction and phosphorylation. J. Biol. Chem. 279, 25549-25561.   DOI   ScienceOn
70 Chen, J., Dai, G., Wang, Y. Q., Wang, S., Pan, F. Y., Xue, B., Zhao, D. H. and Li, C. J. (2006) Polo-like kinase 1 regulates mitotic arrest after UV irradiation through dephosphorylation of p53 and inducing p53 degradation. FEBS Lett. 580, 3624-3630.   DOI   ScienceOn
71 Liu, X. and Erikson, R. L. (2003) Polo-like kinase (Plk)1 depletion induces apoptosis in cancer cells. Proc. Natl. Acad. Sci. U.S.A. 100, 5789-5794.   DOI   ScienceOn
72 Liu, X. S., Li, H., Song, B. and Liu, X. (2011) Polo-like kinase 1 phosphorylation of G2 and S-phase-expressed 1 protein is essential for p53 inactivation during G2 checkpoint recovery. EMBO Rep. 11, 626-632.
73 Eckerdt, F., Yuan, J. and Strebhardt, K. (2005) Polo-like kinases and oncogenesis. Oncogene 24, 267-276.   DOI   ScienceOn
74 Lu, L. Y. and Yu, X. (2009) The balance of Polo-like kinase 1 in tumorigenesis. Cell Div. 4, 4.   DOI   ScienceOn
75 Spankuch-Schmitt, B., Bereiter-Hahn, J., Kaufmann, M. and Strebhardt, K. (2002) Effect of RNA silencing of polo-like kinase-1 (PLK1) on apoptosis and spindle formation in human cancer cells. J. Natl. Cancer Inst. 94, 1863-1877.   DOI   ScienceOn
76 van Vugt, M. A., Smits, V. A., Klompmaker, R. and Medema, R. H. (2001) Inhibition of Polo-like kinase-1 by DNA damage occurs in an ATM- or ATR-dependent fashion. J. Biol. Chem. 276, 41656-41660.   DOI   ScienceOn
77 Strebhardt, K. (2010) Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat. Rev. Drug. Discov. 9, 643-660.   DOI   ScienceOn
78 Shibata, A., Moiani, D., Arvai, A. S., Perry, J., Harding, S. M., Genois, M. M., Maity, R., van Rossum-Fikkert, S., Kertokalio, A., Romoli, F., Ismail, A., Ismalaj, E., Petricci, E., Neale, M. J., Bristow, R. G., Masson, J. Y., Wyman, C., Jeggo, P. A. and Tainer, J. A. (2014) DNA Double-Strand Break Repair Pathway Choice Is Directed by Distinct MRE11 Nuclease Activities. Mol. Cell 53, 7-18.   DOI   ScienceOn
79 You, Z., Shi, L. Z., Zhu, Q., Wu, P., Zhang, Y. W., Basilio, A., Tonnu, N., Verma, I. M., Berns, M. W. and Hunter, T. (2009) CtIP links DNA double-strand break sensing to resection. Mol. Cell 36, 954-969.   DOI   ScienceOn
80 Mikhailov, A., Cole, R. W. and Rieder, C. L. (2002) DNA damage during mitosis in human cells delays the metaphase/ anaphase transition via the spindle-assembly checkpoint. Curr. Biol. 12, 1797-1806.   DOI   ScienceOn
81 Guan, R., Tapang, P., Leverson, J. D., Albert, D., Giranda, V. L. and Luo, Y. (2005) Small interfering RNA-mediated Polo-like kinase 1 depletion preferentially reduces the survival of p53-defective, oncogenic transformed cells and inhibits tumor growth in animals. Cancer Res. 65, 2698-2704.   DOI   ScienceOn
82 Steegmaier, M., Hoffmann, M., Baum, A., Lenart, P., Petronczki, M., Krssak, M., Gurtler, U., Garin-Chesa, P., Lieb, S., Quant, J., Grauert, M., Adolf, G. R., Kraut, N., Peters, J. M. and Rettig, W. J. (2007) BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr. Biol. 17, 316-322.
83 Heijink, A. M., Krajewska, M. and van Vugt, M. A. (2013) The DNA damage response during mitosis. Mutat. Res. 750, 45-55.   DOI   ScienceOn
84 Jackson, S. P. and Bartek, J. (2009) The DNA-damage response in human biology and disease. Nature 461, 1071-1078.   DOI   ScienceOn