• Title/Summary/Keyword: mitogen-activated protein kinase pathway

Search Result 322, Processing Time 0.026 seconds

The Mitogen-Activated Protein Kinase Signal Transduction Pathways in Alternaria Species

  • Xu, Houjuan;Xu, Xiaoxue;Wang, Yu-Jun;Bajpai, Vivek K.;Huang, Lisha;Chen, Yongfang;Baek, Kwang-Hyun
    • The Plant Pathology Journal
    • /
    • v.28 no.3
    • /
    • pp.227-238
    • /
    • 2012
  • Mitogen-activated protein kinase (MAPK) cascades are conserved signaling modules in the eukaryotic cells. They are involved in many major cell processes in fungi such as stress responses, vegetative growth, pathogenicity, secondary metabolism and cell wall integrity. In this review, we summarized the advances of research on the MAPK signaling pathways in Alternaria species. As major phytopathogenic fungi, Alternaria species reduce crop production. In contrast to the five MAPK pathways known in yeast, only three MAPK pathways as Fus3/Kss1-type, Hog1-type, and Slt2-type have been characterized in Alternaria. The Fus3/Kss1-type MAPK pathway participates in regulation of vegetative growth, conidiation, production of some cell-wall-degrading enzymes and pathogenicity. The Hog1-type pathway is involved in osmotic and oxidative stress, fungicides susceptibility and pathogenicity. The Slt2-type MAP kinases play an important role on maintaining cell wall integrity, pathogenicity and conidiation. Although recent advances on the MAPK pathways in Alternaria spp. reveal many important features on the pathogenicity, there are many unsolved problems regarding to the unknown MAP kinase cascade components and network among other major signal transduction. Considering the economic loss induced by Alternaria spp., more researches on the MAPK pathways will need to control the Alternaria diseases.

Role of MAPK Signaling Pathways in Regulating the Hydrophobin Cryparin in the Chestnut Blight Fungus Cryphonectria parasitica

  • So, Kum-Kang;Kim, Dae-Hyuk
    • Mycobiology
    • /
    • v.45 no.4
    • /
    • pp.362-369
    • /
    • 2017
  • We assessed the regulation of cryparin, a class II hydrophobin, using three representative mitogen-activated protein kinase (MAPK) pathways in Cryphonectria parasitica. Mutation of the CpSlt2 gene, an ortholog of yeast SLT2 in the cell wall integrity (CWI) pathway, resulted in a dramatic decrease in cryparin production. Similarly, a mutant of the CpBck1 gene, a MAP kinase kinase kinase gene in the CWI pathway, showed decreased cryparin production. Additionally, mutation of the cpmk1 gene, an ortholog of yeast HOG1, showed decreased cryparin production. However, mutation of the cpmk2 gene, an ortholog of yeast Kss1/Fus3, showed increased cryparin production. The easy-wet phenotype and accumulation of the cryparin transcript in corresponding mutants were consistent with the cryparin production results. In silico analysis of the promoter region of the cryparin gene revealed the presence of binding motifs related to downstream transcription factors of CWI, HOG1, and pheromone responsive pathways including MADS-box- and Ste12-binding domains. Real-time reverse transcriptase PCR analyses indicated that both CpRlm1, an ortholog of yeast RLM1 in the CWI pathway, and cpst12, an ortholog of yeast STE12 in the mating pathway, showed significantly reduced transcription levels in the mutant strains showing lower cryparin production in C. prasitica. However, the transcription of CpMcm1, an ortholog of yeast MCM1, did not correlate with that of the mutant strains showing downregulation of cryparin. These results indicate that three representative MAPK pathways played a role in regulating cryparin production. However, regulation varied depending on the MAPK pathways: the CWI and HOG1 pathways were stimulatory, whereas the pheromone-responsive MAPK was repressive.

Critical role of protein L-isoaspartyl methyltransferase in basic fibroblast growth factor-mediated neuronal cell differentiation

  • Dung, To Thi Mai;Yi, Young-Su;Heo, Jieun;Yang, Woo Seok;Kim, Ji Hye;Kim, Han Gyung;Park, Jae Gwang;Yoo, Byong Chul;Cho, Jae Youl;Hong, Sungyoul
    • BMB Reports
    • /
    • v.49 no.8
    • /
    • pp.437-442
    • /
    • 2016
  • We aimed to study the role of protein L-isoaspartyl methyltransferase (PIMT) in neuronal differentiation using basic fibroblast growth factor (bFGF)-induced neuronal differentiation, characterized by cell-body shrinkage, long neurite outgrowth, and expression of neuronal differentiation markers light and medium neurofilaments (NF). The bFGF-mediated neuronal differentiation of PC12 cells was induced through activation of mitogen-activated protein kinase (MAPK) signaling molecules [MAPK kinase 1/2 (MEK1/2), extracellular signal-regulated kinase 1/2 (ERK1/2), and p90RSK], and phosphatidylinositide 3-kinase (PI3K)/Akt signaling molecules PI3Kp110β, PI3Kp110γ, Akt, and mTOR. Inhibitors (adenosine dialdehyde and S-adenosylhomocysteine) of protein methylation suppressed bFGF-mediated neuronal differentiation of PC12 cells. PIMT-eficiency caused by PIMT-specific siRNA inhibited neuronal differentiation of PC12 cells by suppressing phosphorylation of MEK1/2 and ERK1/2 in the MAPK signaling pathway and Akt and mTOR in the PI3K/Akt signaling pathway. Therefore, these results suggested that PIMT was critical for bFGF-mediated neuronal differentiation of PC12 cells and regulated the MAPK and Akt signaling pathways.

Britanin Suppresses IgE/Ag-Induced Mast Cell Activation by Inhibiting the Syk Pathway

  • Lu, Yue;Li, Xian;Park, Young Na;Kwon, Okyun;Piao, Donggen;Chang, Young-Chae;Kim, Cheorl-Ho;Lee, Eunkyung;Son, Jong Keun;Chang, Hyeun Wook
    • Biomolecules & Therapeutics
    • /
    • v.22 no.3
    • /
    • pp.193-199
    • /
    • 2014
  • The aim of this study was to determine whether britanin, isolated from the flowers of Inula japonica (Inulae Flos), modulates the generation of allergic inflammatory mediators in activated mast cells. To understand the biological activity of britanin, the authors investigated its effects on the generation of prostaglandin $D_2$ ($PGD_2$), leukotriene $C_4$ ($LTC_4$), and degranulation in IgE/Ag-induced bone marrow-derived mast cells (BMMCs). Britanin dose dependently inhibited degranulation and the generations of $PGD_2$ and $LTC_4$ in BMMCs. Biochemical analyses of IgE/Ag-mediated signaling pathways demonstrated that britanin suppressed the phosphorylation of Syk kinase and multiple downstream signaling processes, including phospholipase $C{\gamma}1$ ($PLC{\gamma}1$)-mediated calcium influx, the activation of mitogen-activated protein kinases (MAPKs; extracellular signal-regulated kinase 1/2, c-Jun $NH_2$-terminal kinase and p38), and the nuclear factor-${\kappa}B$ ($NF-{\kappa}B$) pathway. Taken together, the findings of this study suggest britanin suppresses degranulation and eicosanoid generation by inhibiting the Syk-dependent pathway and britanin might be useful for the treatment of allergic inflammatory diseases.

Ginsenoside Rg1 activates ligand-independent estrogenic effects via rapid estrogen receptor signaling pathway

  • Gao, Quan-Gui;Zhou, Li-Ping;Lee, Vien Hoi-Yi;Chan, Hoi-Yi;Man, Cornelia Wing-Yin;Wong, Man-Sau
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.527-538
    • /
    • 2019
  • Background: Ginsenoside Rg1 was shown to exert ligand-independent activation of estrogen receptor (ER) via mitogen-activated protein kinase-mediated pathway. Our study aimed to delineate the mechanisms by which Rg1 activates the rapid ER signaling pathways. Methods: ER-positive human breast cancer MCF-7 cells and ER-negative human embryonic kidney HEK293 cells were treated with Rg1 ($10^{-12}M$, $10^{-8}M$), $17{\beta}$-estradiol ($10^{-8}M$), or vehicle. Immunoprecipitation was conducted to investigate the interactions between signaling protein and ER in MCF-7 cells. To determine the roles of these signaling proteins in the actions of Rg1, small interfering RNA or their inhibitors were applied. Results: Rg1 rapidly induced $ER{\alpha}$ translocation to plasma membrane via caveolin-1 and the formation of signaling complex involving linker protein (Shc), insulin-like growth factor-I receptor, modulator of nongenomic activity of ER (MNAR), $ER{\alpha}$, and cellular nonreceptor tyrosine kinase (c-Src) in MCF-7 cells. The induction of extracellular signal-regulated protein kinase and mitogen-activated protein kinase kinase (MEK) phosphorylation in MCF-7 cells by Rg1 was suppressed by cotreatment with small interfering RNA against these signaling proteins. The stimulatory effects of Rg1 on MEK phosphorylation in these cells were suppressed by both PP2 (Src kinase inhibitor) and AG1478 [epidermal growth factor receptor (EGFR) inhibitor]. In addition, Rg1-induced estrogenic activities, EGFR and MEK phosphorylation in MCF-7 cells were abolished by cotreatment with G15 (G protein-coupled estrogen receptor-1 antagonist). The increase in intracellular cyclic AMP accumulation, but not Ca mobilization, in MCF-7 cells by Rg1 could be abolished by G15. Conclusion: Ginsenoside Rg1 exerted estrogenic actions by rapidly inducing the formation of ER containing signalosome in MCF-7 cells. Additionally, Rg1 could activate EGFR and c-Src ER-independently and exert estrogenic effects via rapid activation of membrane-associated ER and G protein-coupled estrogen receptor.

Blockade of p38 Mitogen-activated Protein Kinase Pathway Inhibits Interleukin-6 Release and Expression in Primary Neonatal Cardiomyocytes

  • Chae, Han-Jung;Kim, Hyun-Ki;Lee, Wan-Ku;Chae, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.6
    • /
    • pp.319-325
    • /
    • 2002
  • The induction of interleukin-6 (IL-6) using combined proinflammatory agents $(LPS/IFN-{\gamma}\;or\;TNF-{\alpha}/IFN-{\gamma})$ was studied in relation to p38 mitogen-activated protein kinase (MAPK) and $NF-{\kappa}B$ transcriptional factor in primary neonatal cardiomyocytes. When added to cultures of cardiomyocytes, the combined agents $(LPS/IFN-[\gamma}\;or\;TNF-{\alpha}/IFN-{\gamma})$ had stimulatory effect on the production of IL-6 and the elevation was significantly reduced by SB203580, a specific p38 MAPK inhibitor. SB203580 inhibited protein production and gene expression of IL-6 in a concentration-dependent manner. In this study, $IFN-{\gamma}$ enhancement of $TNF-{\alpha}-induced\;NF-{\kappa}B$ binding affinity as well as p38 MAP kinase activation was observed. However, a specific inhibitor of p38 MAPK, SB203580, had no effect on $TNF-{\alpha}/IFN-{\gamma}\;or\;LPS/IFN-{\gamma}-induced\;NF-{\kappa}B$ activation. This study strongly suggests that these pathways about $TNF-{\alpha}/IFN-{\gamma}$ or $LPS/IFN-{\gamma}-activated$ IL-6 release can be primarily dissociated in primary neonatal cardiomyocytes.

BCAR3 Activates the Estrogen Response Element through the PI3-kinase/Akt Pathway in Human Breast MCF-12A Cells (인간 유방 MCF-12A 세포에서 PI3-kinase 경로를 통한 BCAR3의 estrogen response element 활성화)

  • Myung-Ju, Oh;Joo-Yeon, Ha;Byung H., Jhun
    • Journal of Life Science
    • /
    • v.32 no.11
    • /
    • pp.882-889
    • /
    • 2022
  • Breast cancer anti-estrogen resistance 3 (BCAR3) has been identified as one of the genes that induces anti-estrogen resistance in breast cancer. We have previously reported that BCAR3 activates promoters of c-Jun, activator protein-1, and the serum response element. In this study, we investigated the functional role of BCAR3 in the activation of the estrogen response element (ERE) in normal human breast MCF-12A cells. Transient expression of BCAR3 induced ERE activation, which was further increased by 17β-estradiol treatment but was not blocked by the anti-estrogen tamoxifen. Next, we studied the signaling pathway of BCAR3 leading to ERE activation. BCAR3-mediated ERE activation was inhibited by LY294002 and AZD5363, inhibitors of the phosphatidylinositol (PI) 3-kinase pathway, but not by PD98059 and U0126, inhibitors of the mitogen-activated protein kinase pathway. ERE activation was induced by the catalytic subunit p110α. of PI3-kinase or the active mutant of Akt, and this activation was not further increased by additional BCAR3 transfection. Based on these results, we propose that BCAR3 plays an important role in ERE activation through the PI3-kinase/Akt pathway in human breast MCF-12A cells.

p38 mitogen-activated protein kinase contributes to TNFα-induced endothelial tube formation of bone-marrow-derived mesenchymal stem cells by activating the JAK/STAT/TIE2 signaling axis

  • Sukjin Ou;Tae Yoon Kim;Euitaek Jung;Soon Young Shin
    • BMB Reports
    • /
    • v.57 no.5
    • /
    • pp.238-243
    • /
    • 2024
  • Bone marrow-derived mesenchymal stem cells (BM-MSCs) can differentiate into endothelial cells in an inflammatory microenvironment. However, the regulatory mechanisms underlying this process are not entirely understood. Here, we found that TIE2 in BM-MSCs was upregulated at the transcriptional level after stimulation with tumor necrosis factor-alpha (TNFα), a major pro-inflammatory cytokine. Additionally, the STAT-binding sequence within the proximal region of TIE2 was necessary for TNFα-induced TIE2 promoter activation. TIE2 and STAT3 knockdown reduced TNFα-induced endothelial tube formation in BM-MSCs. Among the major TNFα-activated MAP kinases (ERK1/2, JNK1/2, and p38 MAPK) in BM-MSCs, only inhibition of the p38 kinase abrogated TNFα-induced TIE2 upregulation by inhibiting the JAK-STAT signaling pathway. These findings suggest that p38 MAP contributes to the endothelial differentiation of BM-MSCs by activating the JAK-STAT-TIE2 signaling axis in the inflammatory microenvironment.

Effect of Glucagon-like Peptide 2 on Tight Junction in Jejunal Epithelium of Weaned Pigs though MAPK Signaling Pathway

  • Yu, Changsong;Jia, Gang;Jiang, Yi;Deng, Qiuhong;Chen, Zhengli;Xu, Zhiwen;Chen, Xiaolin;Wang, Kangning
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.5
    • /
    • pp.733-742
    • /
    • 2014
  • The glucagon-like peptide 2 (GLP-2) that is expressed in intestine epithelial cells of mammals, is important for intestinal barrier function and regulation of tight junction (TJ) proteins. However, there is little known about the intracellular mechanisms of GLP-2 in the regulation of TJ proteins in piglets' intestinal epithelial cells. The purpose of this study is to test the hypothesis that GLP-2 regulates the expressions of TJ proteins in the mitogen-activated protein kinase (MAPK) signaling pathway in piglets' intestinal epithelial cells. The jejunal tissues were cultured in a Dulbecco's modified Eagle's medium/high glucose medium containing supplemental 0 to 100 nmol/L GLP-2. At 72 h after the treatment with the appropriate concentrations of GLP-2, the mRNA and protein expressions of zonula occludens-1 (ZO-1), occludin and claudin-1 were increased (p<0.05). U0126, an MAPK kinase inhibitor, prevented the mRNA and protein expressions of ZO-1, occludin, claudin-1 increase induced by GLP-2 (p<0.05). In conclusion, these results indicated that GLP-2 could improve the expression of TJ proteins in weaned pigs' jejunal epithelium, and the underlying mechanism may due to the MAPK signaling pathway.

Regulation of Interleukin-1${\beta}$-induced Dedifferentiation and Apoptosis via p38 Mitogen-activated Protein Kinase Pathway in Articular Chondnocytes (연골세포의 탈분화 및 세포고사 억제를 위한 기전연구)

  • Huh Jeong-Eun;Cho Eun-Mi;Yang Ha-Ru;Kim Dae-Sung;Baek Yong-Hyeon;Lee Jae-Dong;Choi Do-Young;Park Dong-Suk
    • The Journal of Korean Medicine
    • /
    • v.27 no.1 s.65
    • /
    • pp.220-228
    • /
    • 2006
  • Objectives : Interleukin-1 (IL-1)${\beta}$ in articular chondrocytes regulates differentiation, apoptosis, and inflammatory responses. It is still controversial, So, we investigated IL- $1{\beta}$ induces chondrocytes dedifferentiation and death. Also, we studied the role of the mitogen-activated protein kinase (MAPK) subtypes on IL-$1{\beta}$-induced dedifferentiation and apoptosis. Methods : To evaluation of dedifferentiation by chemokines of chondrocytes, we assessed such as proteoglycan, collagen, MMP-3 and MMP-13 by RT-PCR analysis. Also, to assess of apoptosis effect by chemokines, we measured annexin V/propidium iodode (PI) and sub G1 cells in chondrocytes by flowcytometric analysis Results : IL-$1{\beta}$ treatment did not affect activation of ERK-1/2, but stimulation of p38 kinase. Inhibition of phospho ERK-1/2 with PD98059 enhanced IL-1b-induced dedifferentiation, and apoptosis up to 13.5%, whereas inhibition of phospho p38 kinase with SB203580 inhibited dedifferentiation, and apoptosis. Conclusions : Our results indicate that SB203580, p38 kinase inhibitor, inhibits IL-$1{\beta}$-induced dedifferentiation, and apoptosis by the inhibition of type II collagen expression and proteoglycan synthesis of rabbit articular chondrocytes.

  • PDF