Browse > Article
http://dx.doi.org/10.5713/ajas.2013.13540

Effect of Glucagon-like Peptide 2 on Tight Junction in Jejunal Epithelium of Weaned Pigs though MAPK Signaling Pathway  

Yu, Changsong (Animal Nutrition Institute, Sichuan Agricultural University)
Jia, Gang (Animal Nutrition Institute, Sichuan Agricultural University)
Jiang, Yi (Animal Nutrition Institute, Sichuan Agricultural University)
Deng, Qiuhong (Animal Nutrition Institute, Sichuan Agricultural University)
Chen, Zhengli (College of Animal Medicine, Sichuan Agriculture University)
Xu, Zhiwen (College of Animal Medicine, Sichuan Agriculture University)
Chen, Xiaolin (Animal Nutrition Institute, Sichuan Agricultural University)
Wang, Kangning (Animal Nutrition Institute, Sichuan Agricultural University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.27, no.5, 2014 , pp. 733-742 More about this Journal
Abstract
The glucagon-like peptide 2 (GLP-2) that is expressed in intestine epithelial cells of mammals, is important for intestinal barrier function and regulation of tight junction (TJ) proteins. However, there is little known about the intracellular mechanisms of GLP-2 in the regulation of TJ proteins in piglets' intestinal epithelial cells. The purpose of this study is to test the hypothesis that GLP-2 regulates the expressions of TJ proteins in the mitogen-activated protein kinase (MAPK) signaling pathway in piglets' intestinal epithelial cells. The jejunal tissues were cultured in a Dulbecco's modified Eagle's medium/high glucose medium containing supplemental 0 to 100 nmol/L GLP-2. At 72 h after the treatment with the appropriate concentrations of GLP-2, the mRNA and protein expressions of zonula occludens-1 (ZO-1), occludin and claudin-1 were increased (p<0.05). U0126, an MAPK kinase inhibitor, prevented the mRNA and protein expressions of ZO-1, occludin, claudin-1 increase induced by GLP-2 (p<0.05). In conclusion, these results indicated that GLP-2 could improve the expression of TJ proteins in weaned pigs' jejunal epithelium, and the underlying mechanism may due to the MAPK signaling pathway.
Keywords
Glucagon-like Peptide 2; Weaned Pig; Tight Junction; Jejunal Epithelium; Mitogen-activated Protein Kinase Signaling Pathway;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Basuroy, S., A. Seth, B. Elias, A. P. Naren, and R. Rao. 2006. MAPK interacts with occludin and mediates EGF-induced prevention of tight junction disruption by hydrogen peroxide. Biochem. J. 393:69-77.   DOI   ScienceOn
2 Benjamin, M. A., D. M. McKay, P. C. Yang, H. Cameron, and M. H. Perdue. 2000. Glucagons-like peptide-2 enhances intestinal epithelial barrier function of both Tran cellular and Para cellular pathways in the mouse. Gut 47:112-119.   DOI   ScienceOn
3 Bruewer, M., A. Luegering, T. Kucharzik, C. A. Parkos, J. L. Madara, A. M. Hopkins, and A. Nusrat. 2003. Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J. Immunol. 171: 6164-6172.   DOI
4 Burrin, D. G., B. Stoll, X. F. Guan, L. W. Cui, X. Y. Chang, and D. Hadsell. 2007. GLP-2 rapidly activates divergent intracellular signaling pathways involved in intestinal cell survival and proliferation in neonatal piglets. Am. J. Physiol. Endocrinol. Metab. 292:E281-E291.
5 Cameron, H. L. and M. H. Perdue. 2005. Stress impairs murine intestinal barrier function: improvement by glucagon-like peptide-2. J. Pharmacol. Exp. Ther. 314:214-220.   DOI   ScienceOn
6 Drucker, D. J., B. Yusta, R. P. Boushey, B. L. DeForest, and P. L. Brubaker. 1999. Human [Gly2] GLP-2 reduces the severity of colonic injury in a murine model of experimental colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 276:G79-G91.
7 Cameron, H. L., P. C. Yang, and M. H. Perdue. 2003. Glucagon-like peptide-2-enhanced barrier function reduces pathophysiology in a model of food allergy. Am. J. Physiol. Gastrointest. Liver Physiol. 284:G905-G912.   DOI   ScienceOn
8 Chen, Z. Y., X. S. Feng, and P. Yang. 2008. Effect of glucagon-like peptide-2 on modulation of intestinal epithelium tight junction in rats with obstructive jaundice. Chi. J. Gener. Surg. 17:760-763.
9 Drucker, D. J. 2002. Gut adaptation and the glucagon-like peptides. Gut 50:428-435.   DOI
10 Fanning, A. S., B. J. Jameson, L. A. Jesaitis, and J. M. Anderson. 1998. The tight junction protein ZO-1 establishes a link between the Tran membrane protein occludin and the actin cytoskeleton. J. Biol. Chem. 273:745-753.
11 Favata, M. F., K. Y. Horiuchi, E. J. Manos, A. J. Daulerio, D. A. Stradley, W. S. Feeser, D. E. Van Dyk, W. J. Pitts, A. E. Richard, F. Hobbs, R. A. Copeland, R. L. Magolda, P. A. Scherle, and J. M. Trzaskos. 1998. Identification of a novel inhibitor of mitogen activated protein kinas. J. Biol. Chem. 273:18623-18632.   DOI   ScienceOn
12 Feldman, G., B. Kiely, N. Martin, G. Ryan, T. McMorrow, and M. P. Ryan. 2007. Role for TGF-beta in cyclosporine-induced modulation of renal epithelial barrier function. J. Am. Soc. Nephrol. 18:1662-1671.   DOI   ScienceOn
13 Furuse, M., T. Hirase, M. Itoh, A. Nagafuchi, S. Yonemura, S. Tsukita, and S. Tsukita. 1993. Occludin: A novel integral membrane protein localizing at tight junctions. J. Cell Biol. 123:1777-1788.   DOI   ScienceOn
14 Jasleen, J., N. Shimoda, E. R. Shen, A. Tavakkolizadeh, E. E. Whang, D. O. Jacobs, M. J. Zinner, and S. W. Ashley. 2000. Signaling mechanisms of glucagons-like peptide 2-induced intestinal epithelial cell proliferation. J. Surg. Res. 90:13-18.   DOI   ScienceOn
15 Gonzalez-Mariscal, L., R. Tapia, and D. Chamorro. 2008. Crosstalk of tight junction components with signaling pathways. Biochim. Biophys. Acta 1778:729-756.   DOI   ScienceOn
16 Kansagra, K., B. Stoll, C. Rognerud, H. Niinikoski, N. O. Ching, R. Harvey, and D. Burrin. 2003. Total parenteral nutrition adversely affects gut barrier function in neonatal piglets. Am. J. Physiol. Gastrointest. Liver Physiol. 285:G1162-G1170.   DOI   ScienceOn
17 Howe, K. L., C. Reardon, A. Wang, A. Nazli, and D. M. McKay. 2005. Transforming growth factor-beta regulation of epithelial tight junction proteins enhances barrier function and blocks enterohemorrhagic Escherichia coli O157:H7-induced increased permeability. Am. J. Pathol. 167:1587-1597.   DOI   ScienceOn
18 Kato, Y., D. Yu, and M. Z. Schwartz. 1999. Glucagonlike peptide-2 enhances small intestinal absorptive function and mucosal mass in vivo. J. Pediatr. Surg. 34:18-21.   DOI   ScienceOn
19 Kucharzik, T., S. V. Walsh, and J. Chen. 2001. Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins. Am. J. Pathol. 159: 2001-2009.   DOI   ScienceOn
20 Lipschutz, J. H., S. Li, A. Arisco, and D. F. Balkovetz. 2005. Extracellular signal-regulated kinases 1/2 control claudin-2 expression in Madin-Darby canine kidney strain I and II cells. J. Biol. Chem. 280:3780-3788.   DOI   ScienceOn
21 Prasad, R., K. Alavi, and M. Z. Schwartz. 2000. Glucagonlike peptide-2 analogue enhances intestinal mucosal mass after ischemia and reperfusion. J. Pediatr. Surg. 35:357-359.   DOI   ScienceOn
22 Tsukita, S., M. Furuse, and M. Itoh. 2001. Multifunctional strands in tight junctions. Nat. Rev. Mol. Cell Biol. 2:285-293.   DOI   ScienceOn
23 Munroe, D. G., A. K. Gupta, F. Kooshesh, T. B. Vyas, G. Rizkalla, H. Wang, L. Demchyshyn, Z. J. Yang, R. K. Kamboj, H. Chen, K. McCallum, M. Sumner-Smith, D. J. Drucker, and A. C. Prototypic. 1999. Prototypic G protein-coupled receptor for the intestinotrophic factor glucagon-like peptide 2. Proc. Natl. Acad. Sci. USA 96:1569-1573.   DOI   ScienceOn
24 Osek, J. 1999. Prevalence of virulence factors of Escherichia coli strains isolated from diarrheic and healthy piglets after weaning. Vet. Microbiol. 68:209-217.   DOI   ScienceOn
25 Pfaffl, M. W. 2001. A new mathematical model for relative quantification in real time RT-PCR. Nucl. Acids Res. 29 (9):e45.   DOI   ScienceOn
26 Wachtel, M., K. Frei, E. Ehler, C. Bauer, M. Gassmann, and S. M. Gloor. 2002. Extracellular signal-regulated protein kinase activation during reoxygenation is required to restore ischaemia-induced endothelial barrier failure. Biochem. J. 367: 873-879.   DOI   ScienceOn
27 Yusta, B., R. Somwar, F. Wang, D. Munroe, S. Grinstein, A. Klip, and D. J. Drucker. 1999. Identification of glucagons-like peptide-2 (GLP-2) activated signaling pathways in baby hamster kidney fibroblasts expressing the rat GLP-2 receptor. J. Biol. Chem. 274:30459-30467.   DOI
28 Jasleen, J., S. W. Ashley, N. Shimoda, M. J. Zinner, and E. E. Whang. 2002. Glucagon-like peptide 2 stimulates intestinal epithelial proliferation in vitro. Digest. Dis. Sci. 47:1135-1140.   DOI   ScienceOn
29 Burrin, D. G., Y. Petersen, B. Stoll, and P. Sangild. 2001. Glucagon-like peptide 2: A nutrient-responsive gut growth factor. J. Nutr. 131:709-712.