• 제목/요약/키워드: mitochondrial pathways

검색결과 181건 처리시간 0.019초

Induction of apoptosis by methanol extracts of Ficus carica L. in FaDu human hypopharynx squamous carcinoma cells

  • Lee, Seul Ah;Park, Bo-Ram;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • 제45권3호
    • /
    • pp.99-106
    • /
    • 2020
  • Ficus carica L. (fig) is one of the first cultivated crops and is as old as humans. This plant has been extensively used as a traditional medicine for treating diseases, such as cough, indigestion, nutritional anemia, and tuberculosis. However, the physiological activity of fig leaves on oral cancer is as yet unknown. In this study, we investigated the anticancer effect of methanol extracts of Ficus carica (MeFC) and the mechanism of cell death in human FaDu hypopharyngeal squamous carcinoma cells. MeFC decreased the viability of oral cancer (FaDu) cells but did not affect the viability of normal (L929) cells, as determined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay and Live and Dead assay. In addition, MeFC induced apoptosis through the proteolytic cleavage of procaspase-3, -9, poly (ADP-ribose) polymerase (PARP), downregulation of Bcl-2, and upregulation of Bax, as determined by 4′,6-diamidino-2-phenylindole dihydrochloride staining and western blot analysis. Moreover, a concentration of MeFC without cytotoxicity (0.25 mg/mL) significantly suppressed colony formation, a hallmark of cancer development, and completely inhibited the colony formation at 1 mg/mL. Collectively, these results suggest that MeFC exhibits a potent anticancer effect by suppressing the growth of oral cancer cells and colony formation via caspase- and mitochondrial-dependent apoptotic pathways in FaDu human hypopharyngeal squamous carcinoma cells. Therefore, the methanol extract of Ficus carcica leaves provide a natural chemotherapeutic drug for human oral cancer.

Mechanism Underlying NaF-Induced Apoptosis in Human Oral Squamous Cell Carcinoma

  • Hur, Young-Joo;Kim, Do-Kyun;Lee, Seung-Eun;Kim, In-Ryoung;Jeong, Na-Young;Kim, Ji-Young;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • 제35권2호
    • /
    • pp.51-60
    • /
    • 2010
  • Few studies have evaluated the apoptosis-inducing efficacy of NaF on cancer cells in vitro but there has been no previous investigation of the apoptotic effects of NaF on human oral squamous cell carcinoma cells. In this study, we have investigated the mechanisms underlying the apoptotic response to NaF treatment in the YD9 human squamous cell carcinoma cell line. The viability of YD9 cells and their growth inhibition were assessed by MTT and clonogenic assays, respectively. Hoechst staining, DNA electrophoresis and TUNEL staining were conducted to detect apoptosis. YD9 cells were treated with NaF, and western blotting, immunocytochemistry, confocal microscopy, FACScan flow cytometry, and MMP and proteasome activity assays were performed sequentially. The NaF treatment resulted in a time- and dose-dependent decrease in YD9 cell viability, a dose-dependent inhibition of cell growth, and the induction of apoptotic cell death. The apoptotic response of these cells was manifested by nuclear condensation, DNA fragmentation, the reduction of MMP and proteasome activity, a decreased DNA content, the release of cytochrome c into the cytosol, the translocation of AIF and DFF40 (CAD) into the nucleus, a significant shift of the Bax/Bcl-2 ratio, and the activation of caspase-9, caspase-3, PARP, Lamin A/C and DFF45 (ICAD). Furthermore, NaF treatment resulted in the downregulation of G1 cell cyclerelated proteins, and upregulation of p53 and the Cdk inhibitor $p27^{KIP1}$. Taken collectively, our present findings demonstrate that NaF strongly inhibits YD9 cell proliferation by modulating the expression of G1 cell cycle-related proteins and inducing apoptosis via mitochondrial and caspase pathways.

Anti-cancer Activity of Anthricin through Caspase-dependent Apoptosis in Human Hypopharyngeal Squamous Carcinoma Cell

  • Kim, Won Gi;Lee, Seul Ah;Moon, Sung Min;Kim, Jin-Soo;Kim, Su-Gwan;Shin, Yong Kook;Kim, Do Kyung;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • 제41권4호
    • /
    • pp.183-190
    • /
    • 2016
  • Anthricin (Deoxypodophyllotoxin), a naturally occurring flavolignan, has well known anti-cancer properties in several cancer cells, such as prostate cancer, cervical carcinoma and pancreatic cancer. However, the effects of Anthricin are currently unknown in oral cancer. We examined the anticancer effect and mechanism of action of Anthricin in human FaDu hypopharyngeal squamous carcinoma cells. Our data showed that Anthricin inhibits cell viability in a dose- and time-dependent manner ($IC_{50}$ 50 nM) in the MTT assay and Live & Dead assay. In addition, Anthricin treated FaDu cells showed marked apoptosis by DAPI stain and FACS. Furthermore, Anthricin activates anti-apoptotic factors such as caspase-3, -9 and poly (ADP-ribose) polymerase (PARP), suggesting that caspase-mediated pathways are involved in Anthricin- induced apoptosis. Anthricin treatment also leads to accumulation of the pro-apoptotic factor Bax, followed by inhibition of cell growth. Taken together, these results indicate that Anthricn-induced cell death of human FaDu hypopharyngeal squamous carcinoma cells is mediated by mitochondrial-dependent apoptotic pathway. In summary, our findings provide a framework for further exploration on Anthricin as a novel chemotherapeutic drug for human oral cancer.

H2O2로 유발된 C6 신경교세포 사멸에 대한 총명공진단의 보호 효과 (Protective Effects of Chongmyunggongjin-dan on H2O2-induced C6 Glial Cell Death)

  • 황규상;신용진
    • 대한한방내과학회지
    • /
    • 제41권1호
    • /
    • pp.44-58
    • /
    • 2020
  • Objectives: This study was conducted to identify the protective effects of Chongmyunggongjin-dan (CMGJD) on Hydrogen peroxide (H2O2)-induced apoptosis mechanisms in C6 glial cells. Method: We used CMGJD after distilled water extraction, filtration, and lyophilization. The ROS scavenging effect was examined by fluorescence microscopy. Expression levels of proteins related to ROS generation were investigated by western blotting. Functional changes in organelles related to Reactive oxygen species (ROS) generation were investigated by immunoblotting and by verifying expression level of relevant enzymes. Results: The CMGJD extract protected the cells against H2O2-induced morphological changes and DNA fragmentation, inhibited the increase of Heme_oxygenase-1(HO-1) and the decrease in catalase, protected against the loss of mitochondrial membrane potential, inhibited disturbances of lysosomal function, and induced an increase in peroxisomes. Conclusion: CMGJD was confirmed to have a protective effect on H2O2-induced C6 glial cell death possibly by blocking the pathways causing damage to subcellular organelles, such as mitochondria, lysosomes, and peroxisomes. We assume that CMGJD will be effective for the prevention and treatment of ischemic stroke in a clinical environment.

비만을 동반한 제 2형 당뇨병환자의 혈당 조절을 위한 운동 중재 : 체계적 문헌고찰 (Exercise Intervention on Blood Glucose Control of Type 2 Diabetes with Obesity : A Systematic Review)

  • 정수련;김완수
    • 대한물리의학회지
    • /
    • 제13권1호
    • /
    • pp.11-26
    • /
    • 2018
  • PURPOSE: The aim of this study was to review the effects of exercise intervention on blood glucose control in obese type 2 diabetic patients. METHODS: The PubMed and KERISS search engines were used and 61 papers that met the key questions were selected. RESULTS: Exercise is an effective intervention for the control of blood glucose in type 2 diabetic patients because it does not impair glucose transport in the skeletal muscle induced by muscle contractions. Insulin resistance, which is characteristic of type 2 diabetes, is caused by decreased insulin sensitivity or insulin responsiveness. Acute exercise improves the glucose metabolism by increasing the insulin-independent signaling pathways and insulin sensitivity in the skeletal muscle, and regular long-term exercise improves the skeletal muscle insulin responsiveness and systemic glucose metabolism by increasing the mitochondrial and GLUT4 protein expression in the skeletal muscle. CONCLUSION: The improvement of the glucose metabolism through exercise shows a dose-response pattern, and if exercise consumes the same number of calories, high intensity exercise will be more effective for the glucose metabolism. On the other hand, it is practically difficult for a patient with obese type 2 diabetes to control their blood glucose with high intensity or long-term exercise. Therefore, it will be necessary to study safe adjuvants (cinnamic acid, lithium) that can produce similar effects to high-intensity and high-volume exercises in low-intensity and low-volume exercises.

Extract of Saccharina japonica Induces Apoptosis companied by Cell Cycle Arrest and Endoplasmic Reticulum Stress in SK-Hep1 Human Hepatocellular Carcinoma Cells

  • Jung, Hyun Il;Jo, Mi Jeong;Kim, Hyung-Rak;Choi, Yung Hyun;Kim, Gun-Do
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권7호
    • /
    • pp.2993-2999
    • /
    • 2014
  • Saccharina japonica is a family member of Phaeophyceae (brown macro-alga) and extensively cultivated in China, Japan and Korea. Here, the potential anti-cancer effect of n-hexane fraction of S. japonica was evaluated in SK-Hep1 human hepatocellular carcinoma cells. The N-hexane fraction reduced cell viability and increased the numbers of apoptotic cells in a both dose- and time-dependent manner. Apoptosis was activated by both caspase-dependent and independent pathways. The caspase-dependent cell death pathway is mediated by cell surface death receptors and activated caspase-8 amplified the apoptotic signal either through direct activation of downstream caspase-3 or pro-apoptotic proteins (Bad, Bax and Bak) subsequently leading to the release of cytochrome c. On the other hand, caspase-independent apoptosis appeared mediated by disruption of mitochondrial membrane potential and translocation of AIF to the nucleus where they induced chromatin condensation and/or large-scale DNA fragmentation. In addition, the n-hexane fraction induced endoplasmic reticulum (ER)-stress and cell cycle arrest. The results suggested that potential anti-cancer effects of n-hexane extract from S. japonica on SK-Hep1 cells.

Proteomic Changes in Chick Brain Proteome Post Treatment with Lathyrus Sativus Neurotoxin, β-N-Oxalyl-L-α,β-Diaminopropionic Acid (L-ODAP): A Better Insight to Transient Neurolathyrism

  • Anil Kumar, D;Natarajan, Sumathi;Omar, Nabil A M Bin;Singh, Preeti;Bhimani, Rohan;Singh, Surya Satyanarayana
    • Toxicological Research
    • /
    • 제34권3호
    • /
    • pp.267-279
    • /
    • 2018
  • Neurolathyrism is a neurodegenerative disorder characterized by spastic paraplegia resulting from the excessive consumption of Lathyrus sativus (Grass pea). ${\beta}$-N-Oxalyl-L-${\alpha},{\beta}$-diaminopropionic acid (L-ODAP) is the primary neurotoxic component in this pea. The present study attempted to evaluate the proteome-wide alterations in chick brain 2 hr and 4 hr post L-ODAP treatment. Proteomic analysis of chick brain homogenates revealed several proteins involved in cytoskeletal structure, signaling, cellular metabolism, free radical scavenging, oxidative stress and neurodegenerative disorders were initially up-regulated at 2 hr and later recovered to normal levels by 4 hr. Since L-ODAP mediated neurotoxicity is mainly by excitotoxicity and oxidative stress related dysfunctions, this study further evaluated the role of L-ODAP in apoptosis in vitro using human neuroblastoma cell line, IMR-32. The in vitro studies carried out at $200{\mu}M$ L-ODAP for 4 hr indicate minimal intracellular ROS generation and alteration of mitochondrial membrane potential though not leading to apoptotic cell death. L-ODAP at low concentrations can be explored as a stimulator of various reactive oxygen species (ROS) mediated cell signaling pathways not detrimental to cells. Insights from our study may provide a platform to explore the beneficial side of L-ODAP at lower concentrations. This study is of significance especially in view of the Government of India lifting the ban on cultivation of low toxin Lathyrus varieties and consumption of this lentil.

구강암편평세포암에서 c-Met 발현여부에 따른 (-)-Epigallocatechin-3-Gallate의 세포사멸 및 종양침습억제효과의 변화분석 (Analysis of (-)-Epigallocatechin-3-Gallate-Induced Apoptosis and Inhibition of Invasiveness in Oral Cavity Carcinoma Squamous Cell Carcinoma According to Expression of c-Met)

  • 신유섭;고윤우;최은창;강성운;황혜숙;추옥성;이한빈;김철호
    • 대한두경부종양학회지
    • /
    • 제27권1호
    • /
    • pp.3-11
    • /
    • 2011
  • Hepatocyte growth factor(HGF) and c-Met play an important role in the control of tumor growth and invasion, and they are known to be good prognostic indicators of patient outcome. Epigallocatechin-3-gallate (EGCG) has been shown to have chemopreventive and therapeutic properties by modulating multiple signal pathways regarding the control of proliferation and invasion of cells. In this study, we evaluated the role of c-Met in EGCG-induced inhibition of invasion and apoptosis in an oral cancer cell line. In KB cells where c-Met was knocked down with siRNA, we performed invasion assay and FACS with Annexin V-FITC/PT staining. In addition, we checked the change of mitochondrial membrane potential(MMP) and the generation of reactive oxygen species(ROS). EGCG-induced inhibition of invasiveness was significantly decreased after the knock-down of c-Met. EGCG-induced apoptosis, MMP change and ROS generation was also reduced in c-Met knock-ed-down KB cells. These results suggest that c-Met is involved in EGCG-induced apoptosis and inhibition of invasiveness of oral cancer cell line.

Protective effects of an ethanol extract of Angelica keiskei against acetaminophen-induced hepatotoxicity in HepG2 and HepaRG cells

  • Choi, Yoon-Hee;Lee, Hyun Sook;Chung, Cha-Kwon;Kim, Eun Ji;Kang, Il-Jun
    • Nutrition Research and Practice
    • /
    • 제11권2호
    • /
    • pp.97-104
    • /
    • 2017
  • BACKGROUND/OBJECTIVE: Although Angelica keiskei (AK) has widely been utilized for the purpose of general health improvement among Asian, its functionality and mechanism of action. The aim of this study was to determine the protective effect of ethanol extract of AK (AK-Ex) on acute hepatotoxicity induced by acetaminophen (AAP) in HepG2 human hepatocellular liver carcinoma cells and HepaRG human hepatic progenitor cells. MATERIALS/METHODS: AK-Ex was prepared HepG2 and HepaRG cells were cultured with various concentrations and 30 mM AAP. The protective effects of AK-Ex against AAP-induced hepatotoxicity in HepG2 and HepaRG cells were evaluated using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, lactate dehydrogenase (LDH) assay, flow cytometry, and Western blotting. RESULTS: AK-Ex, when administered prior to AAP, increased cell growth and decreased leakage of LDH in a dose-dependent manner in HepG2 and HepaRG cells against AAP-induced hepatotoxicity. AK-Ex increased the level of Bcl-2 and decreased the levels of Bax, Bok and Bik decreased the permeability of the mitochondrial membrane in HepG2 cells intoxicated with AAP. AK-Ex decreased the cleavage of poly (ADP-ribose) polymerase (PARP) and the activation of caspase-9, -7, and -3. CONCLUSIONS: These results demonstrate that AK-Ex downregulates apoptosis via intrinsic and extrinsic pathways against AAP-induced hepatotoxicity. We suggest that AK could be a useful preventive agent against AAP-induced apoptosis in hepatocytes.

Apoptotic Effects of A Cisplatin and Eugenol Co-treatment of G361 Human Melanoma Cells

  • Park, Jun-Young;Jo, Jae-Beom;Kim, In-Ryoung;Kim, Gyoo-Cheon;Kwak, Hyun-Ho;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • 제36권3호
    • /
    • pp.155-162
    • /
    • 2011
  • Eugenol (4-allyl-2-methoxyphenol) is a naturally occurring phenolic compound that is widely used in dentistry as a component of zinc oxide eugenol cement that is commonly applied to the mouth environment. Cisplatin is one of the most potent known anticancer agents and shows significant clinical activity against a variety of solid tumors. This study was undertaken to investigate the synergistic apoptotic effects of co-treatments with eugenol and cisplatin on human melanoma (G361) cells. To investigate whether this co-treatment efficiently reduces the viability of G361 cells compared with each single treatment, an MTT assay was conducted. The induction and augmentation of apoptosis were confirmed by DNA electrophoresis, Hoechst staining and an analysis of DNA hypoploidy. Western blot analysis and immunofluorescent staining were also performed to evaluate the expression levels and the translocation of apoptosis-related proteins following this co-treatment. Furthermore, proteasome activity and mitochondrial membrane potential (MMP) changes were also assayed. The results indicated that a co-treatment with eugenol and cisplatin induced multiple pathways and processes associated with an apoptotic response in G361 cells including nuclear condensation, DNA fragmentation, a reduction in MMP and proteasome activity, the increase and decrease of Bax and Bcl-2, a decreased DNA content, the release of cytochrome c into the cytosol, the translocation of AIF and DFF40 (CAD) into the nucleus, and the activation of caspase-9, caspase-7, caspase-3, PARP and DFF45 (ICAD). In contrast, separate treatments of 300 ${\mu}M$ eugenol or 3 ${\mu}M$ cisplatin for 24 h did not induce apoptosis. Our present data thus suggest that a combination therapy of eugenol and cisplatin is a potential treatment strategy for human melanoma.