• 제목/요약/키워드: mitochondrial cox1

검색결과 108건 처리시간 0.027초

What's in a name? Monophyly of genera in the red algae: Rhodophyllis parasitica sp. nov. (Gigartinales, Rhodophyta); a new red algal parasite from New Zealand

  • Preuss, Maren;Zuccarello, Giuseppe C.
    • ALGAE
    • /
    • 제29권4호
    • /
    • pp.279-288
    • /
    • 2014
  • Red algal parasites are common within red algae and are mostly closely related to their hosts, but have a reduced habit. In the past, red algal parasites, due to their reduced morphology, have been given distinct generic names, even though they are often phylogenetically nested in their host's genus. This is a problem nomenclaturally for maintenance of a taxonomy based on monophyly. This study investigates the morphology, genetic variation and distribution of an undescribed red algal parasite growing on its host Rhodophyllis membranacea, widely distributed throughout New Zealand. Microscopy, molecular markers (plastid, mitochondrial, nuclear), and herbarium investigation were used to investigate this species. The parasite is widely distributed throughout New Zealand. All molecular markers clearly show that the parasite is almost identical to the host, even though morphologically quite distinct from members of the host genus. We believe that to maintain monophyly of Rhodophyllis the parasite should be described as a new species of Rhodophyllis, Rhodophyllis parasitica sp. nov. We also recommend that in order to maintain generic monophyly most red algal parasite genera should also be transferred to their host genus.

First Record of Callochiton foveolatus (Polyplacophora: Callochitonidae) from Korea

  • Shin, Youngheon;Lee, Yucheol;Park, Joong-Ki
    • Animal Systematics, Evolution and Diversity
    • /
    • 제34권1호
    • /
    • pp.64-68
    • /
    • 2018
  • The genus Callochiton Gray, 1847 is small to medium sized chiton (up to $55{\times}36mm$ in size) and includes approximately 30 species worldwide, most of which are found on hard substrata in subtidal zone. To date, only three species of Callochiton Gray, 1847 have been reported in Japan. In this study, we found C. foveolatus(Is. Taki, 1938) as first record of the family Callochitonidae Plate, 1901 in Korea and its morphological features were described and compared with other northwestern Pacific species. In addition, the partial fragment of mitochondrial DNA cytochrome c oxidase subunit I sequences of C. foveolatus was determined as DNA barcoding record and compared with other congeneric species.

Mitochondrial energy metabolic transcriptome profiles during cardiac differentiation from mouse and human pluripotent stem cells

  • Cho, Sung Woo;Kim, Hyoung Kyu;Sung, Ji Hee;Kim, Yeseul;Kim, Jae Ho;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권5호
    • /
    • pp.357-365
    • /
    • 2022
  • Simultaneous myofibril and mitochondrial development is crucial for the cardiac differentiation of pluripotent stem cells (PSCs). Specifically, mitochondrial energy metabolism (MEM) development in cardiomyocytes is essential for the beating function. Although previous studies have reported that MEM is correlated with cardiac differentiation, the process and timing of MEM regulation for cardiac differentiation remain poorly understood. Here, we performed transcriptome analysis of cells at specific stages of cardiac differentiation from mouse embryonic stem cells (mESCs) and human induced PSCs (hiPSCs). We selected MEM genes strongly upregulated at cardiac lineage commitment and in a time-dependent manner during cardiac maturation and identified the protein-protein interaction networks. Notably, MEM proteins were found to interact closely with cardiac maturation-related proteins rather than with cardiac lineage commitment-related proteins. Furthermore, MEM proteins were found to primarily interact with cardiac muscle contractile proteins rather than with cardiac transcription factors. We identified several candidate MEM regulatory genes involved in cardiac lineage commitment (Cck, Bdnf, Fabp4, Cebpα, and Cdkn2a in mESC-derived cells, and CCK and NOS3 in hiPSC-derived cells) and cardiac maturation (Ppargc1α, Pgam2, Cox6a2, and Fabp3 in mESC-derived cells, and PGAM2 and SLC25A4 in hiPSC-derived cells). Therefore, our findings show the importance of MEM in cardiac maturation.

Morphological and Molecular Identification of Spirometra Tapeworms (Cestoda: Diphyllobothriidae) from Carnivorous Mammals in the Serengeti and Selous Ecosystems of Tanzania

  • Ndosi, Barakaeli Abdieli;Park, Hansol;Lee, Dongmin;Choe, Seongjun;Kang, Yeseul;Nath, Tilak Chandra;Bia, Mohammed Mebarek;Eamudomkarn, Chatanun;Jeon, Hyeong-Kyu;Eom, Keeseon S.
    • Parasites, Hosts and Diseases
    • /
    • 제58권6호
    • /
    • pp.653-660
    • /
    • 2020
  • Spirometra tapeworms (Cestoda: Diphyllobothriidae) collected from carnivorous mammals in Tanzania were identified by the DNA sequence analysis of the mitochondrial cytochrome c oxidase subunit 1 (cox1) and internal transcribed spacer 1 (ITS1), and by morphological characteristics. A total of 15 adult worms were collected from stool samples and carcasses of Panthera leo, Panthera pardus, and Crocuta crocuta in the Serengeti and Selous ecosystems of Tanzania. Three Spirometra species: S. theileri, S. ranarum and S. erinaceieuropaei were identified based on morphological features. Partial cox1 sequences (400 bp) of 10 specimens were revealed. Eight specimens showed 99.5% similarity with Spirometra theileri (MK955901), 1 specimen showed 99.5% similarity with the Korean S. erinaceieuropaei and 1 specimen had 99.5% similarity with Myanmar S. ranarum. Sequence homology estimates for the ITS1 region of S. theileri were 89.8% with S. erinaceieuropaei, 82.5% with S. decipiens, and 78.3% with S. ranarum; and 94.4% homology was observed between S. decipiens and S. ranarum. Phylogenetic analyses were performed with 4 species of Spirometra and 2 species of Dibothriocephalus (=Diphyllobothrium). By both ML and BI methods, cox1 and ITS1 gave well supported, congruent trees topology of S. erinaceieuropaei and S. theileri with S. decipiens and S. ranarum forming a clade. The Dibothriocephalus species were sisters of each other and collectively forming successive outgroups. Our findings confirmed that 3 Spirometra species (S. theileri, S. ranarum, and S. erinaceieuropaei) are distributed in the Serengeti and Selous ecosystems of Tanzania.

New records of three monogonont and seven bdelloid rotifers from Korea

  • Song, Min Ok;Lee, Chang-Ho
    • Journal of Species Research
    • /
    • 제10권4호
    • /
    • pp.392-404
    • /
    • 2021
  • Rotifers collected from mosses, leaf litter, soil, and wetland at six different locations in Korea were investigated. Ten species belonging to six genera in four families of monogonont and bdelloid rotifers were new to Korea: Habrotrocha scepanotrochoides De Koning, 1947, H. tripus (Murray, 1907), Lecane opias (Harring and Myers, 1926), L. perpusilla (Hauer, 1929), Macrotrachela decora (Bryce, 1912), Otostephanos auriculatus auriculatus(Murray, 1911), O. torquatus amoenus Milne, 1916, Scepanotrocha corniculata Bryce, 1910, S. simplex De Koning, 1947, and Testudinella brevicaudata Yamamoto, 1951. Among these 10 Korean new records, Habrotrocha scepanotrochoides, H. tripus, Macrotrachela decora, Otostephanos auriculatus auriculatus, O. torquatus amoenus, Scepanotrocha corniculata, and S. simplex were new to Asia as well. The present study is the first report of the genus Scepanotrocha Bryce, 1910 from Korea. Here, diagnostic characteristics and photomicrographs are provided for each Korean new record. In addition, a partial sequence of mitochondrial cytochrome c oxidase subunit 1 gene (mtCOX1) for S. simplex is presented.

Four bdelloid rotifers new to Korea

  • Min Ok Song;Chang-Ho Lee
    • Journal of Species Research
    • /
    • 제12권2호
    • /
    • pp.115-121
    • /
    • 2023
  • We conducted a taxonomic study of bdelloid rotifers found from terrestrial habitats such as mosses, leaf litter and soil at four different locations in Korea. The study resulted in four new Korean records belonging to two genera in two families, Habrotrochidae and Philodinidae, of bdelloid rotifers: Habrotrocha soror Donner, 1950; H. thienemanni rubella Donner, 1951; H. valida Milne, 1916 and Philodina nitida nitida Milne, 1916. These new Korean records are rare and have very limited distributions. Habrotrocha thienemanni rubella and H. valida were not found again after their original descriptions until the present study. The present study is the third record for both H. soror and P. nitida nitida. All these four new Korean records are new to Asian fauna as well. Here, diagnostic characteristics and photomicrographs are provided for each new Korean record. In addition, a partial sequence of mitochondrial cytochrome c oxidase subunit 1 gene (mtCOX1) for P. nitida nitida is presented.

Molecular and Morphologic Identification of Spirometra ranarum Found in the Stool of African Lion, Panthera leo in the Serengeti Plain of Tanzania

  • Eom, Keeseon S.;Park, Hansol;Lee, Dongmin;Choe, Seongjun;Kang, Yeseul;Bia, Mohammed Mebarek;Lee, Sang-Hwa;Keyyu, Julius;Fyumagwa, Robert;Jeon, Hyeong-Kyu
    • Parasites, Hosts and Diseases
    • /
    • 제56권4호
    • /
    • pp.379-383
    • /
    • 2018
  • The present study was performed with morphological and molecular analysis (cox1 and nad1 mitochondrial genes) to identify the proglottids of spirometrid tapeworm found in the stool of an African lion, Panthera leo, in the Serengeti plain of Tanzania. A strand of tapeworm strobila, about 75 cm in length, was obtained in the stool of a male African lion in the Serengeti National Park ($34^{\circ}$ 50' E, $02^{\circ}$ 30' S), Tanzania, in February 2012. The morphological features of the adult worm examined exhibited 3 uterine coils with a bow tie appearance and adopted a diagonal direction in the second turn. The posterior uterine coils are larger than terminal uterine ball and the feature of uteri are swirling rather than spirally coiling. The sequence difference between the Spirometra species (Tanzania origin) and S. erinaceieuropaei (GenBank no. KJ599680) was 9.4% while those of S. decipiens (GenBank no. KJ599679) differed by 2.1% in the cox1 and nad1 genes. Phylogenetic tree topologies generated using the 2 analytic methods were identical and presented high level of confidence values for the 3 major branches of the 3 Spirometra species in the cox1 gene. The morphological and molecular findings obtained in this study were nearly coincided with those of S. ranarum. Therefore, we can know for the first time that the African lion, Panthera leo, is to the definitive host of this tapeworm.

Genetic and Morphologic Identification of Spirometra ranarum in Myanmar

  • Jeon, Hyeong-Kyu;Park, Hansol;Lee, Dongmin;Choe, Seongjun;Kang, Yeseul;Bia, Mohammed Mebarek;Lee, Sang-Hwa;Sohn, Woon-Mok;Hong, Sung-Jong;Chai, Jong-Yil;Eom, Keeseon S.
    • Parasites, Hosts and Diseases
    • /
    • 제56권3호
    • /
    • pp.275-280
    • /
    • 2018
  • In the present study, we identified a Spirometra species of Myanmar origin (plerocercoid) by molecular analysis using mitochondrial cox1 and nad1 genes, as well as by morphological observations of an adult tapeworm. Spargana specimens were collected from a paddy-field in Taik Kyi Township Tarkwa Village, Yangon, Myanmar in December 2017. A total of 5 spargana were obtained from 20 frogs Hoplobatrachus rugulosus; syn: Rana rugulosa (Wiegmann, 1834) or R. tigrina (Steindachner, 1867). The plerocercoids were used for experimental infection of a dog. After 4 weeks of infection, an adult tapeworm was recovered from the intestine of the dog. Morphologically, the distinct features of Spirometra sp. (Myanmar origin) relative to S. erinaceieuropaei and S. decipiens include a uterine morphology comprising posterior uterine coils that larger than the terminal uterine ball and coiling of the uteri diagonally (swirling) rather than spirally. The cox1 sequences (1,566 bp) of the Myanmar-origin Spirometra species showed 97.9% similarity to a reference sequence of S. decipiens (GenBank no. KJ599679) and 90.5% similarity to a reference sequence of S. erinaceieuropaei (GenBank no. KJ599680). Phylogenetic tree topologies were identical and presented high confidence level of values for the 3 major branches of the 3 Spirometra species in cox1 and nad1 genes. These results indicated that Myanmar-origin Spirometra species coincided with those of S. ranarum and may be considered as a valid species.

Echinostoma mekongi: Discovery of Its Metacercarial Stage in Snails, Filopaludina martensi cambodjensis, in Pursat Province, Cambodia

  • Chai, Jong-Yil;Sohn, Woon-Mok;Cho, Jaeeun;Jung, Bong-Kwang;Chang, Taehee;Lee, Keon Hoon;Khieu, Virak;Huy, Rekol
    • Parasites, Hosts and Diseases
    • /
    • 제59권1호
    • /
    • pp.47-53
    • /
    • 2021
  • Echinostoma mekongi was reported as a new species in 2020 based on specimens collected from humans in Kratie and Takeo Province, Cambodia. In the present study, its metacercarial stage has been discovered in Filopaludina martensi cambodjensis snails purchased from a local market nearby the Tonle Sap Lake, Pursat Province, Cambodia. The metacercariae were fed orally to an experimental hamster, and adult flukes were recovered at day 20 post-infection. They were morphologically examined using light and scanning electron microscopes and molecularly analyzed by sequencing of their mitochondrial cox1 and nad1 genes. A total of 115 metacercariae (1-8 per snail) were detected in 60 (60.0%) out of 100 Filopaludina snails examined. The metacercariae were round, 174 ㎛ in average diameter (163-190 ㎛ in range), having a thin cyst wall, a head collar armed with 37 collar spines, and characteristic excretory granules. The adult flukes were elongated, ventrally curved, 7.3 (6.4-8.2)×1.4 (1.1-1.7) mm in size, and equipped with 37 collar spines on the head collar (dorsal spines in 2 alternating rows), being consistent with E. mekongi. In phylogenetic analyses, the adult flukes showed 99.0-100% homology based on cox1 sequences and 98.9-99.7% homology based on nad1 sequences with E. mekongi. The results evidenced that F. martensi cambodjensis snails act as the second intermediate host of E. mekongi, and hamsters can be used as a suitable experimental definitive host. As local people favor to eat undercooked snails, these snails seem to be an important source of human infection with E. mekongi in Cambodia.

Genetic Diversity of Taenia asiatica from Thailand and Other Geographical Locations as Revealed by Cytochrome c Oxidase Subunit 1 Sequences

  • Anantaphruti, Malinee Thairungroj;Thaenkham, Urusa;Watthanakulpanich, Dorn;Phuphisut, Orawan;Maipanich, Wanna;Yoonuan, Tippayarat;Nuamtanong, Supaporn;Pubampen, Somjit;Sanguankiat, Surapol
    • Parasites, Hosts and Diseases
    • /
    • 제51권1호
    • /
    • pp.55-59
    • /
    • 2013
  • Twelve 924 bp cytochrome c oxidase subunit 1 (cox1) mitochondrial DNA sequences from Taenia asiatica isolates from Thailand were aligned and compared with multiple sequence isolates from Thailand and 6 other countries from the GenBank database. The genetic divergence of T. asiatica was also compared with Taenia saginata database sequences from 6 different countries in Asia, including Thailand, and 3 countries from other continents. The results showed that there were minor genetic variations within T. asiatica species, while high intraspecies variation was found in T. saginata. There were only 2 haplotypes and 1 polymorphic site found in T. asiatica, but 8 haplotypes and 9 polymorphic sites in T.saginata. Haplotype diversity was very low, 0.067, in T. asiatica and high, 0.700, in T. saginata. The very low genetic diversity suggested that T. asiatica may be at a risk due to the loss of potential adaptive alleles, resulting in reduced viability and decreased responses to environmental changes, which may endanger the species.