• 제목/요약/키워드: mitochondria-dependent apoptosis

검색결과 187건 처리시간 0.024초

Structural insights into the transcription-independent apoptotic pathway of p53

  • Chi, Seung-Wook
    • BMB Reports
    • /
    • 제47권3호
    • /
    • pp.167-172
    • /
    • 2014
  • Reactivating the p53 pathway in tumors is an important strategy for anticancer therapy. In response to diverse cellular stresses, the tumor suppressor p53 mediates apoptosis in a transcription-independent and transcription-dependent manner. Although extensive studies have focused on the transcription-dependent apoptotic pathway of p53, the transcription-independent apoptotic pathway of p53 has only recently been discovered. Molecular interactions between p53 and Bcl-2 family proteins in the mitochondria play an essential role in the transcription-independent apoptosis of p53. This review describes the structural basis for the transcription-independent apoptotic pathway of p53 and discusses its potential application to anticancer therapy.

Calcium and bioenergetics: from endoplasmic reticulum to mitochondria

  • Lee, Duk-Gyu;Michalak, Marek
    • Animal cells and systems
    • /
    • 제16권4호
    • /
    • pp.269-273
    • /
    • 2012
  • Controlling metabolism throughout life is a necessity for living creatures, and perturbation of energy balance elicits disorders such as type-2 diabetes mellitus and cardiovascular disease. $Ca^{2+}$ plays a key role in regulating energy generation. $Ca^{2+}$ homeostasis of the endoplasmic reticulum (ER) lumen is maintained through the action of $Ca^{2+}$ channels and the $Ca^{2+}$ ATPase pump. Once released from the ER, $Ca^{2+}$ is taken up by mitochondria where it facilitates energy metabolism. Mitochondrial $Ca^{2+}$ serves as a key metabolic regulator and determinant of cell fate, necrosis, and/or apoptosis. Here, we focus on $Ca^{2+}$ transport from the ER to mitochondria, and $Ca^{2+}$-dependent regulation of mitochondrial energy metabolism.

Antiproliferative and Cytotoxic Effects of Resveratrol in Mitochondria-Mediated Apoptosis in Rat B103 Neuroblastoma Cells

  • Rahman, Md. Ataur;Kim, Nam-Ho;Kim, Seung-Hyuk;Oh, Sung-Min;Huh, Sung-Oh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권5호
    • /
    • pp.321-326
    • /
    • 2012
  • Resveratrol, a natural compound, has been shown to possess anti-cancer, anti-aging, anti-inflammatory, anti-microbial, and neuroprotective activities. In this study, we examined the antiproliferative and cytotoxicity properties of resveratrol in Rat B103 neuroblastoma cells; although it's molecular mechanisms for the biological effects are not fully defined. Here, we examined the cellular cytotoxicity of resveratrol by cell viability assay, antiproliferation by BrdU assay, DNA fragmentation by DNA ladder assay, activation of caspases and Bcl-2 family proteins were detected by western blot analyses. The results of our investigation suggest that resveratrol increased cellular cytotoxicity of Rat B103 neuroblastoma cells in a dose-and time-dependent manner with $IC_{50}$ of 17.86 ${\mu}M$ at 48 h. On the other hand, incubation of neuroblastoma cells with resveratrol resulted in S-phase cell cycle arrests which dose-dependently and significantly reduced BrdU positive cells through the downregulation of cyclin D1 protein. In addition, resveratrol dose-dependently and significantly downregulated the expression of anti-apoptotic protein includes Bcl-2, Bcl-xL and Mcl-1 and also activates cleavage caspase-9 and-3 via the downregulation of procaspase-9 and -3 in a dose-dependent manner which indicates that involvement of intrinsic mitochondria-mediated apoptotic pathway. In conclusion, resveratrol increases cellular cytotoxicity and inhibits the proliferation of B103 neuroblastoma cells by inducing mitochondria-mediated intrinsic caspase dependent pathway which suggests this natural compound could be used as therapeutic purposes for neuroblastoma malignancies.

Nitric Oxide-Induced Apoptosis of Human Dental Pulp Cells Is Mediated by the Mitochondria-Dependent Pathway

  • Park, Min Young;Jeong, Yeon Jin;Kang, Gi Chang;Kim, Mi-Hwa;Kim, Sun Hun;Chung, Hyun-Ju;Jung, Ji Yeon;Kim, Won Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권1호
    • /
    • pp.25-32
    • /
    • 2014
  • Nitric oxide (NO) is recognized as a mediator and regulator of inflammatory responses. NO is produced by nitric oxide synthase (NOS), and NOS is abundantly expressed in the human dental pulp cells (HDPCs). NO produced by NOS can be cytotoxic at higher concentrations to HDPCs. However, the mechanism by which this cytotoxic pathway is activated in cells exposed to NO is not known. The purpose of this study was to elucidate the NO-induced cytotoxic mechanism in HDPCs. Sodium nitroprusside (SNP), a NO donor, reduced the viability of HDPCs in a dose- and time-dependent manner. We investigated the in vitro effects of nitric oxide on apoptosis of cultured HDPCs. Cells showed typical apoptotic morphology after exposure to SNP. Besides, the number of Annexin V positive cells was increased among the SNP-treated HDPCs. SNP enhanced the production of reactive oxygen species (ROS), and N-acetylcysteine (NAC) ameliorated the decrement of cell viability induced by SNP. However, a soluble guanylate cyclase inhibitor (ODQ) did not inhibited the decrement of cell viability induced by SNP. SNP increased cytochrome c release from the mitochondria to the cytosol and the ratio of Bax/Bcl-2 expression levels. Moreover, SNP-treated HDPCs elevated activities of caspase-3 and caspase-9. While pretreatment with inhibitors of caspase (z-VAD-fmk, z-DEVD-fmk) reversed the NO-induced apoptosis of HDPCs. From these results, it can be suggested that NO induces apoptosis of HDPCs through the mitochondria-dependent pathway mediated by ROS and Bcl-2 family, but not by the cyclic GMP pathway.

마치현(馬齒莧)이 자궁경부암세포(子宮頸部癌細胞)(HeLa Cell)에 미치는 영향(影響) (Herba Portulacae induced Apoptosis in Human CervicalCarcinoma HeLa Cells)

  • 엄주오;강복환;김양호;유심근
    • 대한한방부인과학회지
    • /
    • 제18권1호
    • /
    • pp.29-44
    • /
    • 2005
  • To address the ability of Herba Portulacae(HP) to induce cell death, we investigated the effect of HP on cell viability. Twenty-four hours later, loss of viability occurred following HP exposure in a dose-dependent manner. The treatment of HP, a commonly used herb formulation in Korea, Japan and China, caused a decrease in cell viability. HP also resulted in apoptotic morphology a brightly blue-fluorescent condensed nuclei by Hoechst 33258-staining, and reduction of cell volume. Our results show that 2mg/ml HP induces mitochondria membrane potential collapse. Immunoblotting data also shows that the expression of Bcl-2, antiaoptotic protein, decrease by the addition of HP. This GFP-Bax overexpression system shows that an important pro-apoptotic Bcl-2-family protein, Bax is translocated to mitochondria by the addition of 2mg/ml HP. Inerestingly, MAPK inhibitor study shows that p38 MAPK inhibitor, SB203580 inhibits HP-induced cell death and caspase-3 activation in HP-treated HeLa cells. Furthermore, HP transiently but significantly induces p38 activation. But P38 MAPK inhibitor does not have any effect on the translocation of Bax. Considering these results, HP induces apoptosis via p38 MAPK activation. But the pathway does not involve the translocation of Bax.

  • PDF

지모(知母)에탄올추출물의 HT-29대장암세포 Apoptosis 유도효과 (Effect of Anemarrhenae Rhizoma Ethanol Extract on Apoptosis Induction of HT-29 Human Colon Cancer Cells)

  • 김태현;김범호;전병국;윤정록;우원홍;문연자;이장천;이부균;박영규;임규상
    • 한방안이비인후피부과학회지
    • /
    • 제24권1호
    • /
    • pp.16-24
    • /
    • 2011
  • Objective : In this study, we investigated the effects of ethanol extract of Anemarrhenae Rhizoma (EAR) on the proliferation and apoptosis induction of HT-29 human colon cancer cells. Methods : Cell viability of HT-29 cells were measured by MTT assay and apoptisis-related proteins were assessed using western blotting. Chromatin condensation of HT-29 cells stained with Hoechst 33258. Results : In the present study, we demonstrated that EAR exhibited significant cytotoxicity in HT-29 cells. The induction of apoptosis in HT-29 cells by EAR treatment was characterized by chromatin condensation and the activation of caspase-3. EAR-induced apoptosis is accompanied by the release of cytochrome c and the specific proteolytic cleavage of PARP. EAR was appeared cytotoxic effect to HT-29 cells in a dose-dependent manner. Concomitantly, EAR treatment led to increase in the caspase-9. The reduction of Bcl-2 and truncation of Bid were induced by EAR. Conclusion : We studied that the EAR induced apoptosis in human colon adenocarcinoma HT-29 cells. These results indicated that EAR can cause apoptosis through mitochondria/caspase pathway in human HT-29 cells.

Glucose Oxidase/glucose Induces Apoptosis in C6 Glial Cells via Mitochondria-dependent Pathway

  • PARK Min Kyu;KIM Woo Sang;LEE Young Soo;KANG Young Jin;CHONG Won Seog;KIM Hye Jung;SEO Han Geuk;LEE Jae Heun;CHANG Ki Churl
    • Biomolecules & Therapeutics
    • /
    • 제13권4호
    • /
    • pp.207-213
    • /
    • 2005
  • It has been proposed that reactive oxygen species (ROS), mainly superoxide anion ($O_2^-$) and hydrogen peroxide ($H_2O_2$), may mediate oxidative stress. Production of $H_2O_2$ during oxidative phosphorylation, inflammation, and ischemia can cause oxidative stress leading to cell death. Although glucose oxidase (GOX) in the presence of glucose continuously generates $H_2O_2$, it is not clear whether GOX produces apoptotic cell death in C6 glial cells. Thus, we investigated the mechanism by which GOX induces cell death. Cells were incubated with different concentration of GOX in the presence of glucose where cell viability, TUNEL and DNA ladder were analyzed. Results indicated that GOX exhibited cytotoxicity in a dose dependent manner by MTT assay. TUNEL positive cell and DNA laddering showed that GOX-induced cytotoxicity was due to apoptosis. Western blot analysis also showed that the cleaved caspase-3 level was detected in the GOX-treated cells at 10 mU/ml and increased dramatically at 30 mU/ml. Cleaved PARP also appeared at 10 mU/ml and lasted at 20 or 30 mU/ml of GOX. Cytochrome c level was increased by GOX dose dependently, which was contrast to Bcl-2 expression level. These results suggest that GOX induces apoptosis through caspase-3 activation, which followed by cytochrome c release from mitochondria through regulating of Bcl-2 level.

Activation of JNK/p38 Pathway is Responsible for α-Methyl-n-butylshikonin Induced Mitochondria-Dependent Apoptosis in SW620 Human Colorectal Cancer Cells

  • Wang, Hai-Bing;Ma, Xiao-Qiong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권15호
    • /
    • pp.6321-6326
    • /
    • 2014
  • ${\alpha}$-Methyl-n-butylshikonin (MBS), one of the active components in the root extracts of Lithospermum erythrorhizon, posses antitumor activity. In this study, we assess the molecular mechanisms of MBS in causing apoptosis of SW620 cells. MBS reduced the cell viability of SW620 cells in a dose-and time-dependent manner and induced cell apoptosis. Treatment of SW620 cells with MBS down-regulated the expression of Bcl-2 and up-regulated the expression of Bak and caused the loss of mitochondrial membrane potential. Additionally, MBS treatment led to activation of caspase-9, caspase-8 and caspase-3, and cleavage of PARP, which was abolished by pretreatment with the pan-caspase inhibitor Z-VAD-FMK. MBS also induced significant elevation in the phosphorylation of JNK and p38. Pretreatment of SW620 cells with specific inhibitors of JNK (SP600125) and p38 (SB203580) abrogated MBS-induced apoptosis. Our results demonstrated that MBS inhibited growth of colorectal cancer SW620 cells by inducing JNK and p38 signaling pathway, and provided a clue for preclinical and clinical evaluation of MBS for colorectal cancer therapy.

당귀보혈탕(當歸補血湯)의 배합비율에 따른 대장암 세포주 HCT116의 세포사멸 효과 (Effect of Dangguibohyultang and its combinations on apoptosis in human colorectal adenocarcinoma HCT116 cells)

  • 김병완;윤현정;전현숙;윤형중;김창현;박선동
    • 대한본초학회지
    • /
    • 제21권2호
    • /
    • pp.37-46
    • /
    • 2006
  • Objectives : The purpose of this study was to investigate the effect of Dangguibohyultang (DB) and its combination (DB-I; Astragali membraneus BUNGE : Angelica gigas NAKAI=5:1, DB-II; Astragali membraneus BUNGE:Angelica gigas NAKAI=1:1, DB-III; Astragali membraneus BUNGE:Angelica gigas NAKAI=1:5,) on apoptosis in human colorectal adenocarcinoma HCT116 cells. Methods : To study the cytotoxic effect of methanol extract of DB-I, DB-II and DB-III on HCT116 cells, the cell viability was determined by XTT reduction method and ttypan blue exclusion assay. To confirm the induction of apoptosis, the cleavage of poly ADP-ribose polymerase (PARP), a substrate for caspase-3 and a typical sign of apoptosis, and the activation of procaspase-3, -8 and -9 were examined by western blot analysis. Furthermore, DB-induced apoptosis was confirmed by DNA fragmentation. The release of cytochrome C from mitochondria to cytosol, the level of Bcl-2 and Bax, and the expressions of Raf/MEK/ERK were examined by western blot analysis. Results : DB-I and DB-II reduced proliferation of HCT116 cells in a dose-dependent manner. DB-I and DB-II decreased procaspase-3, -8, -9 levels in a dose-dependent manner and induced the clevage of PARP. DB-I and DB-II also triggered the mitochondrial apoptotic signaling by increasing the release of cytochrome C from mitochondria to cytosol, decreasing of anti-apoptotic Bcl-2, and increasing of pro-apoptotic Bax. DB-I and DB-II decreased the activation of Ras/Raf/MEK/ERK cascade in a dose-dependent manner. Conclusion : These results suggest that DB-I and DB-II induce apoptosis via mitochondrial pathway in HCT116 cells. Furthermore, Raf/MEK/ERK cascade is involved in DB-induced apoptosis. These results suggest that DB is potentially useful as a chemotherapeutic agent in human liver cancer.

  • PDF

Involvement of Bcl-2 Family and Caspases Cascade in Sodium Fluoride-Induced Apoptosis of Human Gingival Fibroblasts

  • Jung, Ji-Yeon;Park, Jae-Hong;Jeong, Yeon-Jin;Yang, Kyu-Ho;Choi, Nam-Ki;Kim, Sun-Hun;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권5호
    • /
    • pp.289-295
    • /
    • 2006
  • Sodium fluoride (NaF) has been shown to be cytotoxic and elicit inflammatory response in human. However, the cellular mechanisms underlying NaF-induced cytotoxicity in periodontal tissues have not yet been elucidated. This study is aimed to investigate the mechanisms of NaF-induced apoptosis in human gingival fibroblast (HGF). NaF decreased the cell viability of HGF in a dose- and time-dependent manner. NaF gave rise to apoptotic morphological changes including cell shrinkage, chromatin condensation, and DNA fragmentation. However, NaF did not affect the production of ROS. In addition, NaF augumented cytochrome c release from mitochondria into the cytosol, and enhanced caspase -9 and -3 activities., cleavage (85 kDa fragments) of poly (ADP-ribose) polymerase (PARP) and upregulation of voltage-dependent anion channel (VDAC) 1. These results demonstrated that NaF-induced apoptosis in HGF may be mediated with mitochondria. Furthermore, NaF elevated caspase-8 activity and upregulated Fas-ligand (Fas-L), suggesting involvement of death receptor mediated pathway in NaF-induced apoptosis. Expression of Bcl-2, an anti-apoptotic Bcl-2 family, was downregulated, whereas expression of Bax, a pro-apoptotic Bcl-2 family, was not affected in NaF-treated HGF. These results suggest that NaF induces apoptosis in HGF through both mitochondria- and death receptor-mediated pathway mediated by Bcl-2 family.