• Title/Summary/Keyword: mitochondria

Search Result 1,661, Processing Time 0.029 seconds

Studies on the Metabolism-Independent Calium Binding of the Rat Liver Mitochondria (흰쥐 肝미토콘드리아의 非代謝依存性 칼슘 結合에 관한 연구)

  • Kang, Shin-Sung;Ha, Doo-Bong
    • The Korean Journal of Zoology
    • /
    • v.13 no.3
    • /
    • pp.85-93
    • /
    • 1970
  • Measurements were made of the $Ca^++$ uptake, oxygen consumption and ATPase activity of mitochondria extracted from the rat liver in sucrose-tris chloride medium. $Ca^++$ binding of mitochondria was not affected by the incubation temperature in the range of $0^\\circ - 37^\\circ C$. Succinate did not increase the amount of $Ca^++$ bound while it increased oxygen consumption highly. The presence of ATP in the incubation medium did not enhance the $Ca^++$ uptake either. Therefore, it is concluded that the initial binding of $Ca^++$ is independent on metabolism.

  • PDF

Differential Effects of Typical and Atypical Neuroleptics on Mitochondrial Function In Vitro

  • Josephine, S.;Napolitano, Modica;Lagace, Christopher-J.;Brennan, William-A.;Aprille, June-R.
    • Archives of Pharmacal Research
    • /
    • v.26 no.11
    • /
    • pp.951-959
    • /
    • 2003
  • A series of typical (chlorpromazine, haloperidol and thioridazine) and atypical (risperidone, quetiapine, clozapine and olanzapine) antipsychotics were tested for effects on integrated bioenergetic functions of isolated rat liver mitochondria. Polarographic measurement of oxygen consumption in freshly isolated mitochondria showed that electron transfer activity at respiratory complex I is inhibited by chlorpromazine, haloperidol, risperidone, and quetiapine, but not by clozapine, olanzapine, or thioridazine. Chlorpromazine and thioridazine act as modest uncouplers of oxidative phosphorylation. The typical neuroleptics inhibited NADH-coenzyme Q reductase in freeze-thawed mitochondria, which is a direct measure of complex I enzyme activity. The inhibition of NADH-coenzyme Q reductase activity by the atypicals risperidone and quetiapine was 2-4 fold less than that for the typical neuroleptics. Clozapine and olanzapine had only slight effects on NADH-coenzyme Q reductase activity, even at 200 $\mu$ M. The relative potencies of these neuroleptic drugs as inhibitors of mitochondrial bioenergetic function is similar to their relative potencies as risk factors in the reported incidence of extrapyramidal symptoms, including tardive dyskinesia (TD). This suggests that compromised bioenergetic function may be involved in the cellular pathology underlying TD.

Cancer Energy Metabolism: Shutting Power off Cancer Factory

  • Kim, Soo-Youl
    • Biomolecules & Therapeutics
    • /
    • v.26 no.1
    • /
    • pp.39-44
    • /
    • 2018
  • In 1923, Dr. Warburg had observed that tumors acidified the Ringer solution when 13 mM glucose was added, which was identified as being due to lactate. When glucose is the only source of nutrient, it can serve for both biosynthesis and energy production. However, a series of studies revealed that the cancer cell consumes glucose for biosynthesis through fermentation, not for energy supply, under physiological conditions. Recently, a new observation was made that there is a metabolic symbiosis in which glycolytic and oxidative tumor cells mutually regulate their energy metabolism. Hypoxic cancer cells use glucose for glycolytic metabolism and release lactate which is used by oxygenated cancer cells. This study challenged the Warburg effect, because Warburg claimed that fermentation by irreversible damaging of mitochondria is a fundamental cause of cancer. However, recent studies revealed that mitochondria in cancer cell show active function of oxidative phosphorylation although TCA cycle is stalled. It was also shown that blocking cytosolic NADH production by aldehyde dehydrogenase inhibition, combined with oxidative phosphorylation inhibition, resulted in up to 80% decrease of ATP production, which resulted in a significant regression of tumor growth in the NSCLC model. This suggests a new theory that NADH production in the cytosol plays a key role of ATP production through the mitochondrial electron transport chain in cancer cells, while NADH production is mostly occupied inside mitochondria in normal cells.

Induction of Mitochondria-mediated Apoptosis by Solanum Nigrum in Leukemia Cells (용규(龍葵) 추출물이 백혈병 세포의 Apoptosis 유도에 미치는 영향)

  • Chang, Gyu-Tae
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.22 no.1
    • /
    • pp.113-121
    • /
    • 2008
  • Objectives In human myeloid leukemia cells, there are no specific features of apoptosis compared with apoptosis in other cell types. Solanum nigrum L.(SNL) is a deciduous tree, which is widely distributed in Korea with reported anti-tumor, anti-inflammatory and non-specific immune-enhancing properties. Although the plant has been clinically used for treating a variety of diseases, its bioactive ingredients are unknown and its mode of action potential has never been investigated. Thus anti-tumor property of methanol extract was investigated. Methods In this study, anti-tumor property of methanol extract was investigated by determining its in vitro growth-inhibitory effects on human myeloid leukemia cells. XTT proliferation assay, DNA fragmentation, immunoblot analysis, densitometric analysis were used. Results 1. The methanol fraction of the extracts of SNL induced mitochondria-mediated apoptosis in human myeloid leukemia cells. 2. The methanol fraction exhibited relatively higher cytotoxic activity in a dose-dependent manner than chloroform, and hexane fraction. 3. Typical ladder profile of Oligonucleosomal fragments were appeared. 4. The secreted cytosolic cytochrome C level was increased by treatment of methanol fraction. Conclusions Methanol fraction of SNL is capable of inducing apoptosis in human myeloid leukemia cells.

  • PDF

Ultrastructural Changes of Germ Cell during the Gametogenesis in Korean Rockfish, Sebastes schlegeli

  • CHUNG Ee-Yung;CHANG Young Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.6
    • /
    • pp.736-752
    • /
    • 1995
  • Fine structural changes of germ cell during the gametogenesis of Korean rockfish, Sebastes schlegeli sampled in west coast of Korea were investigated from September 1993 to August 1994. In a layer of microvilli of oocyte with active yolk duplication, many pinocytotic vesicles containing protein granules regarded as yolk precursors were observed. The multivesicular bodies were formed by gathered mitochondria. They are participated in formation of the primary yolk globules homogeneously filled with high dense particles and enclosed within a limiting membrane. The precursors of yolk globule appeared to be formed by modification of mitochondria and they developed into the primary yolk globules with participation of large and dense pinocytotic vesicles. Yolk globules in mature oocyte were consisted of three components: the crystalline type main body, the superficial layer with dense and fine granules, and the limiting membrane. Steroid hormone secreting cells were recognized in the interstitial cells of growing testis. Numerous endoplasmic reticula and large mitochondria with well developed tubular cristae appeared in their cytoplasms. The axoneme in the tail flagellum of spermatozoon consisted of nine pairs of microtubules at the periphery and one pair at the center, and they were covered with doublet microtubules.

  • PDF

Spermatid Differentiation and Sperm Ultrastructure of the Granular Ark, Tegillarca granosa (Bivalvia: Arcidae)

  • Lee, Jung-Sick;Park, Jung-Jun;Shin, Yun-Kyung;Jin, Young-Guk
    • Fisheries and Aquatic Sciences
    • /
    • v.10 no.3
    • /
    • pp.143-149
    • /
    • 2007
  • This study describes spermatogenesis and sperm ultrastructure of the granular ark, Tegillarca granosa using light and electron microscopy. In the active spermatogenic season, the testis comprises many spermatogenic follicles that contain germ cells in different developmental stages. Primary spermatocytes in the pachytene stage are characterized by synaptonemal complexes. The early spermatids are characterized by the appearance of several Golgi bodies, increased karyoplasmic electron density, and tubular mitochondria. The mass of proacrosomal granules consists of numerous heterogeneous granules with high electron density that are about 20 nm in diameter. From the midstage of spermiogenesis, the well-developed mitochondria in the cytoplasm aggregate posterior to the nucleus and surround the proximal and distal centrioles. The proacrosomal granules condense and form a single acrosome with a thin envelope. During late spermiogenesis, the acrosome begins to elongate becoming conical. The sperm is approximately $35.0{\mu}m$ long and consists of a head, midpiece, and tail. The head comprises a round nucleus and a conical acrosome. A micro fibrous axial rod is observed between the nucleus and acrosome. The midpiece has a calyx-like structure with five mitochondria, and the tail, which has the typical "9+2" microtubular system, originates from the distal centriole.

Morphometric Study of Heart Development in Rat Fetus (Rat 태생기의 심장성장에 따른 형태측량적 연구)

  • Park, Won-Hark;Lee, Yong-Deok;Chung, Hyeung-Jae;Choi, Jeung-Mog
    • Applied Microscopy
    • /
    • v.19 no.2
    • /
    • pp.85-98
    • /
    • 1989
  • The ventricular myocardia of 14, 16, 18 and 20-day-old rat fetuses and newborns have been studies by light and electron microscopic morphometrics. The volume density of the myocyte and interstitial compartments as well as volume, surface and numerical density of nuclei were estimated by light microscopic morphometrics. Whereas, the volume density of myofibrils and glycogen granules as well as the volume, surface and numerical density of mitochondria were assessed by electron microscopic morphometrics. The volume density of myocyte compartment of the ventricular myocardia in developing fetuses decreased, but increased in newborn rats. On the other hand, the volume density of the interstitial compartment increased in growing fetuses and decreased in newborns. In all groups the volume, surface and numerical density of nuclei decreased gradually with elongation of myocytes. Conversely, the volume, surface and numerical density of mitochondria and volume density of myofibrils and glycogen granules in ventricular myocytes incresed. The increase in numerical density of mitochondria probably reflects an increase in metabolic activity. Sarcomere length also increased during development.

  • PDF

VaSpoU1 (SpoU gene) may be involved in organelle rRNA/tRNA modification in Viscum album

  • Ahn, Joon-Woo;Kim, Suk-Weon;Liu, Jang-Ryol;Jeong, Won-Joong
    • Plant Biotechnology Reports
    • /
    • v.5 no.3
    • /
    • pp.289-295
    • /
    • 2011
  • The SpoU family of proteins catalyzes the methylation of transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs). We characterized a putative tRNA/rRNA methyltransferase, VaSpoU1 of the SpoU family, from Viscum album (mistletoe). VaSpoU1 and other plant SpoU1s exhibit motifs of the SpoU methylase domain that are conserved with bacterial and yeast SpoU methyltransferases. VaSpoU1 transcripts were detected in the leaves and stems of V. album. VaSpoU1-GFP fusion proteins localized to both chloroplasts and mitochondria in Arabidopsis protoplasts. Sequence analysis similarly predicted that the plant SpoU1 proteins would localize to chloroplasts and mitochondria. Interestingly, mitochondrial localization of VaSpoU1 was inhibited by the deletion of a putative N-terminal presequence in Arabidopsis protoplasts. Therefore, VaSpoU1 may be involved in tRNA and/or rRNA methylation in both chloroplasts and mitochondria.

HSV-1 ICP27 induces apoptosis by promoting Bax translocation to mitochondria through interacting with 14-3-3θ

  • Kim, Ji Ae;Kim, Jin Chul;Min, Jung Sun;Kang, Inho;Oh, Jeongho;Ahn, Jeong Keun
    • BMB Reports
    • /
    • v.50 no.5
    • /
    • pp.257-262
    • /
    • 2017
  • The subcellular localization of Bax plays a crucial role during apoptosis. In response to apoptotic stimuli, Bax translocates from the cytoplasm to the mitochondria, where it promotes the release of cytochrome c to the cytoplasm. In cells infected with HSV-1, apoptosis is triggered or blocked by diverse mechanisms. In this study, we demonstrate how HSV-1 ICP27 induces apoptosis and modulates mitochondrial membrane potential in HEK 293T cells. We found that ICP27 interacts with $14-3-3{\theta}$ which sequesters Bax to the cytoplasm. In addition, ICP27 promotes the translocation of Bax to the mitochondria by inhibiting the interaction between $14-3-3{\theta}$ and Bax. Our findings may provide a novel apoptotic regulatory pathway induced by ICP27 during HSV-1 infection.

Detection of Mitochondrial Reactive Oxygen Species in Living Rat Trigeminal Caudal Neurons

  • Lee, Hae In;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.40 no.2
    • /
    • pp.103-109
    • /
    • 2015
  • Growing evidence suggests that mitochondrial reactive oxygen species (ROS) are involved in various pain states. This study was performed to investigate whether ROS-induced changes in neuronal excitability in trigeminal subnucleus caudalis are related to ROS generation in mitochondria. Confocal scanning laser microscopy was used to measure ROS-induced fluorescence intensity in live rat trigeminal caudalis slices. The ROS level increased during the perfusion of malate, a mitochondrial substrate, after loading of 2',7'-dichlorofluorescin diacetate ($H_2DCF-DA$), an indicator of the intracellular ROS; the ROS level recovered to the control condition after washout. When pre-treated with phenyl N-tert-butylnitrone (PBN) and 4-hydroxy-2,2,6,6-tetramethylpiperidene-1-oxyl (TEMPOL), malate-induced increase of ROS level was suppressed. To identify the direct relation between elevated ROS levels and mitochondria, we applied the malate after double-loading of $H_2DCF-DA$ and chloromethyl-X-rosamine (CMXRos; MitoTracker Red), which is a mitochondria-specific fluorescent probe. As a result, increase of both intracellular ROS and mitochondrial ROS were observed simultaneously. This study demonstrated that elevated ROS in trigeminal subnucleus caudalis neuron can be induced through mitochondrial-ROS pathway, primarily by the leakage of ROS from the mitochondrial electron transport chain.