Browse > Article

Differential Effects of Typical and Atypical Neuroleptics on Mitochondrial Function In Vitro  

Josephine, S. (Merrimack College, Department of Biology)
Napolitano, Modica (Merrimack College, Department of Biology)
Lagace, Christopher-J. (Tufts University School of Medicine)
Brennan, William-A. (Augusta Mental Health Institute)
Aprille, June-R. (University of Richmond, Department of Biology)
Publication Information
Archives of Pharmacal Research / v.26, no.11, 2003 , pp. 951-959 More about this Journal
Abstract
A series of typical (chlorpromazine, haloperidol and thioridazine) and atypical (risperidone, quetiapine, clozapine and olanzapine) antipsychotics were tested for effects on integrated bioenergetic functions of isolated rat liver mitochondria. Polarographic measurement of oxygen consumption in freshly isolated mitochondria showed that electron transfer activity at respiratory complex I is inhibited by chlorpromazine, haloperidol, risperidone, and quetiapine, but not by clozapine, olanzapine, or thioridazine. Chlorpromazine and thioridazine act as modest uncouplers of oxidative phosphorylation. The typical neuroleptics inhibited NADH-coenzyme Q reductase in freeze-thawed mitochondria, which is a direct measure of complex I enzyme activity. The inhibition of NADH-coenzyme Q reductase activity by the atypicals risperidone and quetiapine was 2-4 fold less than that for the typical neuroleptics. Clozapine and olanzapine had only slight effects on NADH-coenzyme Q reductase activity, even at 200 $\mu$ M. The relative potencies of these neuroleptic drugs as inhibitors of mitochondrial bioenergetic function is similar to their relative potencies as risk factors in the reported incidence of extrapyramidal symptoms, including tardive dyskinesia (TD). This suggests that compromised bioenergetic function may be involved in the cellular pathology underlying TD.
Keywords
Neuroleptics; Mitochondrial bioenergetic function; Extrapyramidal symptoms; Tardive dyskinesia; Electron transport; Respiratory enzyme complex I; Oxidative phosphorylation;
Citations & Related Records

Times Cited By Web Of Science : 21  (Related Records In Web of Science)
Times Cited By SCOPUS : 22
연도 인용수 순위
1 Andreassen, O. A. and Jorgensen, H. A., Neurotoxicity associated with neuroleptic-induced oral dyskinesias in rats: Implications for tardive dyskinesia. Prog. Neurobiology, 61, 525-541 (2000)   DOI   ScienceOn
2 Beal, M. F., Aging, energy and oxidative stress in neurode-generative diseases. Ann. Neurol., 38, 357-3661 (1995)   DOI   PUBMED   ScienceOn
3 Beasley, C. M., Jr., Hamilton, S. H., Crawford, A. M., Dellva, M. A., Tollefson, G. D., Tran, P. V., Blin, O., and Beuzen, J. N., Olanzapine versus haloperidol: acute phase results of the international double-blind olanzapine trial. Eur. Neuropsycho-pharmacol., 7, 125-137 (1997)   DOI   ScienceOn
4 Guth, P. S. and Spirtes, M. A., The phenothiazine tranquilizers: biochemical and biophysical actions. Int. Rev. Neurobio. l 7, 231-278 (1964)   DOI
5 Maurer, I. and Molle, H-J., Inhibition of complex I by neuroleptics in normal human brain cortex parallels the extrapyramidal toxicity of neuroleptics. Mol. Cell Biochem., 174, 255-259 (1998)   DOI   ScienceOn
6 Schillevoort, I., de Boer, A., Herings, R. M., Roos, R. A., Jansen, P. A., and Leufkens, H. G., Risk of extrapyramidal syndromes with haloperidol, risperidone, or olanzapine. Ann. Pharmacother., 35, 1517-22 (2001)   DOI   ScienceOn
7 Roberts, R. C., Gaither, L. A., Gao, X-M., Kashyap, S. M., and Tammainga, C. A., Ultrastructural correlates of haloperidolinduced oral dyskinesis in rat striatum. Synapse, 20, 234-243 (1995)   DOI   ScienceOn
8 Grenell, R. G., Mendelson, J., and McElroy, W. D., Effects of chlorpromazine on metabolism in central nervous system. AMA Arch. Neurol. Psychiat., 73, 347-351 (1955)   DOI
9 Sussman, N., Choosing an atypical antipsychotic. Int. Clin. Psychopharmacol., 17(3), 29-33 (2002)
10 Burkhardt, C., Kelly, J. P., Lim, Y-H., Filley, C. M., and Parker, W. D., Jr., Neuroleptic medications inhibit complex I of the electron transport chain. Ann. Neurol., 33, 512-517 (1993)   DOI   ScienceOn
11 Loft, S., Astrup, A., Buemann, B., and Poulsen, H. E., Oxidative DNA damage correlated with oxygen consumption in humans. FASEB J., 8, 534-537 (1994)   DOI   PUBMED
12 Tarsy, D. and Baldessarini, R. J., Tardive Dyskinesia. Ann. Rev. Med., 35, 605-623 (1984)   DOI   ScienceOn
13 Rand, D. M., Thermal habit, metabolic rate and the evolution of mitochondrial DNA. Trends Ecol. Evol., 9, 125-131 (1994)   DOI   ScienceOn
14 Goff, D. C., Tsai, G., Beal, M. F., and Coyle, J. T., Tardive dyskinesia and substrates of energy metabolism in CSF. Am. J. Psychiatr., 152, 1730-1736 (1995)   DOI
15 Mitchell, I. J., Crossman, A. R., Liminga, U., Andren, P., and Gunne, L. M., Regional changes in 2-deoxyglucose uptake associated with neuroleptic-induced tardive dyskinesia in the cebus monkey. Mov. Disord., 7, 32-37 (1992)   PUBMED
16 Schapira, A. H. V., Evidence for mitochondrial dysfunction in Parkinsons Disease - a critical appraisal. Mov. Disord., 9, 125-138 (1998)
17 Gallagher, C. H., Koch, J. H., and Mann, D. M., The effect of phenothiazine on the metabolism of rat liver mitochondria. Biochem. Pharmacol., 10, 369-372 (1965)
18 Green, D. R. and Reed, J. C., Mitochondria and apoptosis [Review]. Science, 281, 1309-1312 (1998)   DOI   PUBMED   ScienceOn
19 Beal, M. F., Hyman, B.T., and Koroshetz, W., Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? Trends Neurosci., 16, 125-131 (1993)   DOI   ScienceOn
20 Lemmens, P., Breecher, M., and Van Baelen, B. A., Combined analysis of double-blind studies with risperidone vs. placebo and other antipsychotic agents: factors associated with extrapyramidal symptoms. Acta Psychiatr. Scand., 99(3), 160-170 (1999)   DOI   ScienceOn
21 Chouinard, G., Ross-Chouinard, A., Annable, L., and Jones, B. D., The extrapyramidal symptom rating scale. Can. J. Neurol. Sci., 7, 233 (1980)
22 Balijepalli, S., Boyd, M. R., and Ravindranath, V., Inhibition of mitochondrial complex I by haloperidol: the role of thiol oxidation. Neuropharmacology, 38, 567-577 (1999)   DOI   ScienceOn
23 Glazer, W. M., Extrapyramidal side effects, tardive dyskinesia, and the concept of atypicality. J. Clin. Psychiatry, 61[suppl 3], 16-21 (2000)   DOI   PUBMED   ScienceOn
24 Jeste, D. V., Lacro, J. P., Bailey, A., Rockwell, E., Harris, M. J., and Caligiuri, M. P., Lower incidence of tardive dyskinesia with risperidone compared with haloperidol in older patients. J. Am. Geriatr. Soc., 47(6), 716-719 (1999)   DOI   PUBMED
25 Tarsy, D., Baldessarini, R. J., and Tarazi, F. I., Effects of newer antipsychotics on extrapyramidal function. CNS Drugs, 16, 23-45 (2002)   DOI   ScienceOn
26 Byczkowski, J. Z. and Borysewicz, R., The action of chlorpromazine and imipramine on rat brain mitochondria. Gen. Pharmac., 10, 369-372 (1979)   DOI   ScienceOn
27 Prince, J. A., Yassin, M. S., and Oreland, L., Neurolepticinduced mitochondrial enzyme alterations in rat brain. J. Pharmacol. Exptl. Therapeut., 280, 261-267 (1997)
28 Casey, D. E., Extrapyramidal syndromes and new antipsychotic drugs: findings in patients and non-human primate models. Br. J. Psychiatry Suppl., 168(29), 32-39 (1996)
29 Modica-Napolitano, J. S., Joyal, J. L. , Ara, G., Oseroff, A. R., and Aprille, J. R., Mitochondrial toxicity of cationic photosensitizers for photochemotherapy. Cancer Res., 50, 7876-7881 (1990)   PUBMED
30 Andreassen, O. A. and Jorgensen, H. A., The mitochondrial toxin 3-nitropropionic acid induces vacuous chewing movements in rats. Implications for tardive dyskinesia? Psychopharmacol., 119, 474-476 (1995)   DOI