• 제목/요약/키워드: mitochondria

검색결과 1,648건 처리시간 0.026초

인삼사포닌의 계면활성 및 생체 분자와의 작용 : (V) 미토콘드리아 Cytochrome c 단리에서 인삼사포닌의 추출효과 (Surface Activities of Ginseng Saponins and Their Interactions with Biomolecules'(V) Ginseng Saponins Can Be Vsed in Cytochrome c Isolation)

  • Lee, Jae-Yang;Lee, Sang-Jik
    • Journal of Ginseng Research
    • /
    • 제19권2호
    • /
    • pp.122-126
    • /
    • 1995
  • The effects of treating bovine heart mitochondria with potassium chloride and surfactants such as digitonin and n-dodecy-$\beta$-maltoside (DMS) including plant saponins on extracting cytochrome c were examined. The spectra given by the cytochrome c-containing solutions from the extraction were inspected to ascertain whether ginseng and bellflower saponins could be used instead of the generally- employed surfactants of digitonin and DMS. These studies implied that the effect of ginseng saponins is superior to that of digitonin but inferior to that of DMS, and give rise to the idea of substitutional property of ginseng saponins for the widely-employed surfactants in the extraction of mitochondria intermembrane cytochrome c. The substitution for the solubilizing surfactants by bellflower saponins could, however, not presumably be anticipated; while ginseng saponin mixture are a suitable substitute.

  • PDF

신장의 활성산소 공격에 대한 다시마(Laminaria japonica)와 후코이단 성분의 영향 (Effects of Sea Tangle (Laminaria japonica) and Fucoidan Components on the Attack of Oxygen Radicals in Kidney)

  • 최진호;김대익;박수현;김동우;구재근
    • 한국수산과학회지
    • /
    • 제32권6호
    • /
    • pp.758-763
    • /
    • 1999
  • 다시마 (Laminaria japonica) 추출물 건조분말 $4.0\%$ 첨가사료(Dasi-Ex)와 여기에 후코이단 $1.0\%,\;2.0\%,\;3.0\%$ 첨가사료 (Fuco-I, II, III group)를 SD계 랫트에 45일간 투석하여 노화억제작용에 미치는 영향을 평가하였다. Dasi-Ex 및 Fuco-I, II, III 투여그룹의 신장 mitochondria 및 microsome의 $\cdot$OH의 생성은 대조그룹 대비 각각 $10\~15\%$$15\~30\%$ 의 유의적인 억제효과가 인정되었다. Dasi-Ex 및 Fuco-I, II, III 투여그룹의 신장 microsome의 $H_2O_2$의 생성도 대조그룹 대비 $10\~15\%$의 유의적인 억제효과가 인정되었다. 따라서 신장의$\cdot$OH 및 $H_2O_2$의 생성 억제효과는 다시마추출물보다는 후코이단의 투여가 효과적일 뿐만 아니라 후코이단 첨가량에 따른 용량 의존성도 인정되었다. 신장 mitochondria에서 Dasi-Ex 및 Fuco-I 투여그룹의 BOR생성은 전혀 유의적인 효과가 인정할 수 없었지만, Fuco-II 및 III투여그룹의 BOR 생성은 $12\~16\%$의 유의적인 억제효과가 인정되었다. 신장 microsome에서는 Dasi-Ex 및 Fuco-I, II, III 투여그룹의 BOR의 생성이 $15\~25\%$의 유의적인 억제효과가 인정되었을 뿐만 아니라 후코이단의 첨가량에 따른 용량 의존성이 인정되었다. 또한 신장 mitochondria에서 Dasi-Ex 투여그룹의 IOR의 생성은 유의적인 억제효과가 인정할 수 없었지만, Fuco-I, II, III 투여그룹의 TOR 생성은 $10\~15\%$의 유의적인 억제효과가 인정되었다. 신장 microsome에서는 Fuco-II 및 III 투여그룹만이 $13\~14\%$의 유의적인 IOR의 생성 억제효과가 인정되었다. 신장 mitochondria 및 microsome분획중의 LPO의 생성은 Fuco-II, III의 투여부터 각각 $15\%$$15\~25\%$ 정도의 효과적인 억제효과가 인정되었다. mitochondria 획분에서 Dasi-Ex 및 Fuco-I, II, III 투여그룹의 유동성은 대조그룹의 유동성 대비 $20\~35\%$의 유의적인 유동성의 증가효과가 인정되었다. microsome 분획에서 Basi-Ex 및 Fuco-I, II, III 투여그룹의 유동성은 대조그룹 대비 $17\~24\%$의 유의적인 증가효과가 인정 되었다. 따라서 다시마 추출물 (Dasi-Ex) 단독 투여보다 후코이단 (Fuco-I, II, III)의 투여가 생체 방어효소의 활성을 촉진할 뿐만 아니라 활성산소의 공격으로부터 신장의 기능을 효과적으로 보호할 수 있을 것으로 기대된다.

  • PDF

흰쥐 뇌 미토콘드리아에 의한 superoxide radical의 생성과 이 radical이 미토콘드리아 및 미토콘드리아 외 물질에 대한 독작용과 그 기전에 관한 연구 (Generation of Superoxide Radical from Rat Brain Mitochondria and Mechanism of Its Toxic Action to Mitochondrial and Extra-mitochondrial Components)

  • 노재규;표장근;정명희;임정규;명호진
    • 대한약리학회지
    • /
    • 제21권1호
    • /
    • pp.12-26
    • /
    • 1985
  • 흰쥐 뇌 미토콘드리아에 의한 $O^{-}_{2}{\cdot}$ 의 생성과 이 radical의 유해작용 및 그 작용기전을 알아보기 위하여 본실험을 수행하였다. Succinate와 antimycin존재하에서 미토콘드리아는 $O^{-}_{2}{\cdot}$을 생성하였으며 이는 SOD-inhibitable NBT환원으로 확인되었다. 동일 조건에서 $H_2O_2$는 일차생성물인 $O^{-}_{2}{\cdot}$의 dismutation으로 생성됨을 알수 있었다. 상기조건에서 미토콘드리아의 막지질이 파괴되었고 반응액에 첨가된 isocitrate dehydrogenase와 적혈구에 각각 불활성화와 용혈이 초래되었다. 이같은 작용은 $Fe^{++}$이 있을때만 관찰 되었다. 그리고 독작용은 superoxide dismutase 혹은 castalase에 의해서 억제되었다. 또한 methional을 첨가하였을 때 ethylene이 생성되었으며 그 생성은 $Fe^{++}$에 의하여 현저히 증가하였다. Ethylene 생성 역시 상기 효소에 의하여 억제되었다. 따라서 미토콘드리아에서 발생된 $O^{-}_{2}{\cdot}$은 거대분자 및 세포에 독성을 나타낼수 있으며 이같은 작용은 $Fe^{++}$의 촉매작용에 의한 $O^{-}_{2}{\cdot}$$H_2O_2$의 상호작용으로 발생되는 $OH{\cdot}$ 에 의한것으로 추측되었다. 이상의 결과는 미토콘드리아가 유독성 산소 radical을 발생하므로 조직손상을 시킬 수 있다는 가능성을 시사하는 증거라고 생각되었다.

  • PDF

누에나방(Bombyx mori L.) 종령유충일용 전환기(轉換期)의 전흉선(前胸腺) 분필세포(分泌細胞)의 미세구조적 변화 (Ultrastructural Changes on the Secreting Cells of the Prothoracic Gland During the Larva-pupal Molt of Bombyx mori L.)

  • 오수자;김지현;김창환;김우갑
    • Applied Microscopy
    • /
    • 제12권2호
    • /
    • pp.69-79
    • /
    • 1982
  • In order to define the morphological changes of the secreting cells of prothoracic gland during larva-pupal molt, ultrastructural observations were carried out using Bombyx mori L. as the experimental material. At first stage of present experiment, 4 day old 5th instar larva, the polyhedral secreting cells were centrally located in the prothoracic gland surrounded by the connective sheath. The secreting cells were attached to the neighboring cells by the prominent desmosomes, and the plasma membrane contacted with connective sheath were highly infolded. In cytoplasm, the most of the cell organelles, such as rod-like mitochondria, rough surfaced endoplasmic reticulum, ribosome were developed. As the stages advance from larva to pupa, general feature of the secreting cells were retained, but structural changes of the various cytoplasmic organelles-ribosome, rough surfaced endoplasmic reticulum, mitochondria, Golgi apparatus, lamellar body, and vesicle-were noted. In the perinuclear cytoplasm of the secreting cells at the stage of 6 day old 5th instar larva, it is peculiar that only a large amount of ribosomes were distributed and the other organelles were retreated from the juxtanuclear region. Just before and after spining cocoon, these features were more remarkable. Rough surfaced endoplasmic reticulum were gradually increased from the stage just before spining cocoon to the pharate pupa. Rod-like mitochondria with irregular cristae and the matrix showing low density were distributed throughout the cytoplasm in the secreting cells of the 4 day old 5th instar larva. Sometimes, longitudinally distended and curved mitochondria were observed. At the stage of pharate pupa, most of mitochondria were deformed. The rod-like mitochondria of the secreting cells of pupal prothoracic gland were narrower than those of 4 day old 5th instar larva, and the electron density of the mitochondrial matrix is increased in pupa. Golgi apparatus were a few in number in both stages, last instar larva and spining cocoon. In stages of the pharate pupa, the Golgi apparatus were frequently observed. Cytoplasmic vesicles were observed for the first time in the secreting cells of one day after spining cocoon, and the number and the size of cytoplasmic vesicles were distinctly increased inpharate pupa and just after pupation. In the secretory cells of the PG, it in concluded that the RER was closely related to syntheting the enzymes seem to produce the ecdysone.

  • PDF

Effects of Sperm Motility on In Vitro Production of Embryo and Correlation with Mitochondria Amount in Pig

  • Chung, Ki-Hwa;Kim, In-Cheul;Son, Jung-Ho
    • 한국수정란이식학회지
    • /
    • 제25권4호
    • /
    • pp.263-266
    • /
    • 2010
  • Prediction of semen's fertilizing ability used in artificial insemination (AI) is one of very important factors on pig reproductive performance. In vitro fertilization (IVF) has been used for indirect evaluation of sperm's fertilizing ability and it has been showed as highly correlated index. In swine industry, increasing interest in preservation of boar semen raises questions on the sperm motility from semen used in commercial AI centers. Mitochondria in sperm mid-piece generate the energy to support motility and could be an explanation of impaired fertility. Objective of this study was to suggest usable sperm motility to farms in measuring the effect of sperm motility and sperm abnormality on in vitro production of embryo in which sperm's fertilizing ability can be determined indirectly. Semen samples were provided from local AI center and used within 3 days after collection. Semen samples were divided by 4 different motile groups (>70%; 61~70%; 51~60%; <50%) using CASA (computer-assisted sperm analysis) on the days of IVF. Developmental rate to the blastocyst stage from over 61% motile sperm group showed significantly higher rate than below 60% motile sperm group ($16.5{\pm}0.7{\sim}18.4{\pm}0.8%$ vs $6.3{\pm}0.8{\sim}11.5{\pm}0.7%$, p<0.05). In experiment to determine the relationship between sperm motility and viability and abnormality, over 61% motile sperm groups showed significantly higher viability rate compared to below 60% motile sperm groups ($84.8{\pm}4.0{\sim}88.1{\pm}4.0%$ vs $69.1{\pm}4.0{\sim}74.2{\pm}4.0%$, p<0.05). On the other hand, morphological sperm abnormality showed significantly higher in over 70% motile sperm group ($10.2{\pm}2.2$ vs $16.0{\pm}2.2{\sim}21.0{\pm}2.2%$, p<0.05). In experiment to find the correlation between sperm motility of 4 different motile groups and amount of mitochondria, lower motility group also showed lower level of mitochondria (p<0.05). The mitochondria parameter used in this study showed another possibility to differentiate the sperm motility. Taken together, because below 60% motile semen used in AI reduce the fertility, AI centers should provide the over 60% motile sperm to the farms at the time of AI.

Overexpression of Rcan1-1L Inhibits Hypoxia-Induced Cell Apoptosis through Induction of Mitophagy

  • Sun, Lijun;Hao, Yuewen;An, Rui;Li, Haixun;Xi, Cong;Shen, Guohong
    • Molecules and Cells
    • /
    • 제37권11호
    • /
    • pp.785-794
    • /
    • 2014
  • Mitophagy, a cellular process that selectively targets dysfunctional mitochondria for degradation, is currently a hot topic in research into the pathogenesis and treatment of many human diseases. Considering that hypoxia causes mitochondrial dysfunction, which results in cell death, we speculated that selective activation of mitophagy might promote cell survival under hypoxic conditions. In the present study, we introduced the Regulator of calcineurin 1-1L (Rcan1-1L) to initiate the mitophagy pathway and aimed to evaluate the effect of Rcan1-1L-induced mitophagy on cell survival under hypoxic conditions. Recombinant adenovirus vectors carrying Rcan1-1L were transfected into human umbilical vein endothelial cells and human adult cardiac myocytes. Using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT assay and Trypan blue exclusion assay, Rcan1-1L overexpression was found to markedly reverse cell growth inhibition induced by hypoxia. Additionally, Rcan1-1L overexpression inhibited cell apoptosis under hypoxic conditions, as detected by annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) apoptosis assay. Meanwhile, the mitochondria-mediated cell apoptotic pathway was inhibited by Rcan1-1L. In contrast, knockdown of Rcan1-1L accelerated hypoxia-induced cell apoptosis. Moreover, Rcan1-1L overexpression significantly reduced mitochondrial mass, decreased depolarized mitochondria, and downregulated ATP and reactive oxygen species production. We further delineated that the loss of mitochondrial mass was due to the activation of mitophagy induced by Rcan1-1L. Rcan1-1L overexpression activated autophagy flux and promoted translocation of the specific mitophagy receptor Parkin into mitochondria from the cytosol, whereas inhibition of autophagy flux resulted in the accumulation of Parkin-loaded mitochondria. Finally, we demonstrated that mitochondrial 1permeability transition pore opening was significantly increased by Rcan1-1L overexpression, which suggested that Rcan1-1L might evoke mitophagy through regulating mitochondrial permeability transition pores. Taken together, we provide evidence that Rcan1-1L overexpression induces mitophagy, which in turn contributes to cell survival under hypoxic conditions, revealing for the first time that Rcan1-1L-induced mitophagy may be used for cardioprotection.

Tetrandrine induces mitochondria-dependent apoptosis in HepG2 cells

  • Hee, Oh-Seon;Lee, Bang-Wool;Lee, Byung-Hoon
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.278.2-279
    • /
    • 2002
  • Tetrandrine is a bis-benzyl isoquinoline alkaloid derived from the root of Stephania tetrandra S. Moore. which was reported to elicit in vitro cytotoxic effect on HeLa cells and in vivo supprresive effects on mouse ascite tumor. Tetrandrine also induced apoptosis in a various cell lines. Recent studies have revealed that mitochondria has been shown to play an important role in the regulation of apoptotic processes. (omitted)

  • PDF

Mitophagy: Therapeutic Potentials for Liver Disease and Beyond

  • Lee, Sooyeon;Kim, Jae-Sung
    • Toxicological Research
    • /
    • 제30권4호
    • /
    • pp.243-250
    • /
    • 2014
  • Mitochondrial integrity is critical for maintaining proper cellular functions. A key aspect of regulating mitochondrial homeostasis is removing damaged mitochondria through autophagy, a process called mitophagy. Autophagy dysfunction in various disease states can inactivate mitophagy and cause cell death, and defects in mitophagy are becoming increasingly recognized in a wide range of diseases from liver injuries to neurodegenerative diseases. Here we highlight our current knowledge on the mechanisms of mitophagy, and discuss how alterations in mitophagy contribute to disease pathogenesis. We also discuss mitochondrial dynamics and potential interactions between mitochondrial fusion, fission and mitophagy.

Proposed Mechanisms of Photobiomodulation (PBM) Mediated via the Stimulation of Mitochondrial Activity in Peripheral Nerve Injuries

  • Choi, Ji Eun
    • Medical Lasers
    • /
    • 제10권4호
    • /
    • pp.195-200
    • /
    • 2021
  • Evidence shows that nerve injury triggers mitochondrial dysfunction during axonal degeneration. Mitochondria play a pivotal role in axonal regeneration. Therefore, normalizing mitochondrial energy metabolism may represent an elective therapeutic strategy contributing to nerve recovery after damage. Photobiomodulation (PBM) induces a photobiological effect by stimulating mitochondrial activity. An increasing body of evidence demonstrates that PBM improves ATP generation and modulates many of the secondary mediators [reactive oxygen species (ROS), nitric oxide (NO), cyclic adenosine monophosphate (cAMP), and calcium ions (Ca2+)], which in turn activate multiple pathways involved in axonal regeneration.

The Effect of Melatonin on Mitochondrial Function in Endotoxemia Induced by Lipopolysaccharide

  • Liu, Jing;Wu, Fengming;Liu, Yuqing;Zhang, Tao;Tang, Zhaoxin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권6호
    • /
    • pp.857-866
    • /
    • 2011
  • This study examined the metabolism of free radicals in hepatic mitochondria of goats induced by lipopolysaccharide (LPS), and investigated the effects of melatonin (MT). Forty-eight healthy goats ($10{\pm}1.2\;kg$) were randomly selected and divided into four groups: saline control, LPS, MT+LPS and MT. The goats within each group were3 sacrificed either 3 or 6 h after treatment and the livers removed to isolate mitochondria. The respiration control ratio (RCR), the ADP:O ratio, the oxidative phosphorylation ratio (OPR), the concentration of $H_2O_2$ and the activities of Complex I-IV were determined. The mitochondrial membrane potential ($\Delta\psi_m$) was analyzed by flow cytometry. The results showed that RCR, O/P and OPR of the LPS group decreased (p<0.05), as well as activities of respiratory complexes, whereas the generation of $H_2O_2$ in Complex III increased (p<0.05) after 3 h, while Complex II and III increased after 6 h. Also, it was found that the mitochondrial membrane potential of the LPS group declined (p<0.05). However, pre-treatment with MT attenuated the injury induced by LPS, which not only presented higher (p<0.05) RCR, O/P, OPR, and respiratory complex activities, but also maintained the $\Delta\psi_m$. Interestingly, it is revealed that, in the MT+LPS group, the generation of $H_2O_2$ increased firstly in 3 h, and then significantly (p<0.05).decreased after 6 h. In the MT group, the function of mitochondria, the transmenbrane potential and the generation of $H_2O_2$ were obviously improved compared to the control group. Conclusion: melatonin prevents damage caused by LPS on hepatic mitochondria of goats.