• Title/Summary/Keyword: mission control

Search Result 614, Processing Time 0.023 seconds

Thermo-mechanical Design for On-orbit Verification of MEMS based Solid Propellant Thruster Array through STEP Cube Lab Mission

  • Oh, Hyun-Ung;Ha, Heon-Woo;Kim, Taegyu;Lee, Jong-Kwang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.526-534
    • /
    • 2016
  • A MEMS solid propellant thruster array shall be operated within an allowable range of operating temperatures to avoid ignition failure by incomplete combustion due to a time delay in ignition. The structural safety of the MEMS thruster array under severe on-orbit thermal conditions can also be guaranteed by a suitable thermal control. In this study, we propose a thermal control strategy to perform on-orbit verification of a MEMS thruster module, which is expected to be the primary payload of the STEP Cube Lab mission. The strategy involves, the use of micro-igniters as heaters and temperature sensors for active thermal control because an additional heater cannot be implemented in the current design. In addition, we made efforts to reduce the launch loads transmitted to the MEMS thruster module at the system level structural design. The effectiveness of the proposed thermo-mechanical design strategy has been demonstrated by numerical analysis.

A Comparison of Scheduling Optimization Algorithm for the Efficient Satellite Mission Scheduling Operation (효율적인 위성 임무 스케줄링 운영을 위한 스케줄링 최적화 알고리즘 비교 연구)

  • Baek, Seung-Woo;Cho, Kyeum-Rae;Lee, Dae-Woo;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.48-57
    • /
    • 2010
  • A comparison of two kinds of scheduling optimization algorithms is presented in this paper. As satellite control and operation techniques have been developed, satellite missions became more complicated and overall quantity of missions also increased. These changes require more specific consideration and a huge amount of computation for the satellite mission scheduling. Therefore, it is a good strategy to make a scheduling optimization algorithm for the efficient satellite mission scheduling operation. In this paper, two kinds of scheduling optimization algorithms are designed with tabu-search algorithm and genetic algorithm respectively. These algorithms are applied for the same mission scenario and the results of each algorithm are compared and analyzed.

The Trend of Satellite Mission Operations Team (위성 임무운영팀 동향)

  • Lee, Myeong-Shin;Jung, Ok-Chul;Chung, Dae-Won;Park, Sun-Ju;Shin, Jung-Hoon
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.1
    • /
    • pp.105-115
    • /
    • 2008
  • The organization for satellite operation team is mainly based on the number of satellites to be controlled, operator's workload of payload operation support and the degree of automation of the operation system. Although the structure and its functionality of satellite operation organization are a little different according to the complexity of the operation, most satellite control centers have adapted the similar architecture for single or multiple satellite support. KARI Satellite Operation Center(KSOC) has started its simple mission operations since the launch of KOMPSAT-1(21st Dec. 1999) and has been evolving into multiple mission operations for various satellites such as KOMPSAT-2, KOMPSAT-3, KOMPSAT-5 and COMS(Communication Ocean Meteorological Satellite). This paper presents the appropriate direction of future deployment for KSOC by comparing the current status with the recommendation of the advanced satellite operation organization and analyzing their experiences in order to propose the better solution for efficient and safe satellite operations.

  • PDF

A Study on Improvement about abnormal display of Multi Function Display for KUH (한국형 기동헬기 다기능시현기의 이상시현 개선에 관한 연구)

  • Kim, Young Mok;Chang, Joong Jin;Jun, Byung Kyu;Kim, Chang Young;Kim, Tae Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.4
    • /
    • pp.344-350
    • /
    • 2014
  • Multi Function Display(MFD) of Korean Utility Helicopter(KUH) is the component of mission management/display control system and displays image information(navigation, flight, survivability, digital map, maintenance) acquired from Mission Computer(MC) while the aircraft is operated. It is an essential equipment for pilots to perform flight mission and it has functions of display scene control, data display, built in test(BIT) and brightness control. In this paper, it is analyzed the cause of abnormal display(flickering) on MFD and summarized the design changes to solve the defect. It is also described system safety analysis and suggested verification results of flight/ground test.

Analysis of Guidance Laws for Impact Angle Control Mission of Cooperative Missiles Based on Communication Structure (협업 유도탄 간 상대 충돌 각 제어 임무에서 통신 구조에 따른 유도기법의 영향 분석)

  • Hyosang Ko;Danil Lee;Myunghwa Lee;Hanlim Choi
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.1-11
    • /
    • 2024
  • This paper applies a relative impact angle control guidance law to a communication-based multi-missile network system with uncertainties and disturbances. The multi-missile network system is represented as a transitive reduction directed acyclic graph. Furthermore, this paper introduces both centralized and decentralized guidance laws based on the graph's structure. The relationship between these guidance laws is analyzed by comparing them based on the communication structure and the presence of system noise. To analyze the effects of decentralized optimal cooperative guidance law, this paper assumes uncertainty in missile dynamics and predicted impact point information for the relative impact angle control mission. Monte Carlo simulations are conducted for various mission environments to analyze the impact of communication and its structure on the system.

The Analysis of the U.S. Navy Surface Forces Strategy and the implications to Republic of Korea Navy (미(美) 해군 수상함부대 전략 평가 및 한국 해군에게 주는 시사점)

  • Kim, Hyun-Seung
    • Strategy21
    • /
    • s.41
    • /
    • pp.52-84
    • /
    • 2017
  • After finishing Cold War, the U.S. Navy's ability to Sea control has been gradually eroded last 15-20 years. The global security environment demands that the surface Navy rededicate itself to sea control, as a new group of potential adversaries is working to deny U.S. navy command of the sea. China has been increasing their sea denial capability, such as extended anti-surface cruise missile and anti-surface ballistic missile. To cope with this situation, the U.S. Naval Surface Forces Command has announced Surface Forces Strategy: Return to Sea Control. It is a new operating and organizing concept for the U.S. surface fleet called 'distributed lethality'. Under distributed lethality, offensive weapons such as new ASCMs are to be distributed more widely across all types of Navy surface ships, and new operational concept for Navy surface fleet's capability for attacking enemy ships and make it less possible for an enemy to cripple the U.S. fleet by concentrating its attack on a few very high-value Navy surface ships. By increasing the lethality of the surface ships and distributing them across wide areas, the Navy forces potential adversaries to not only consider the threat from our carrier-based aircraft and submarines, but they now consider the threat form all of those surface ships. This idea of using the distributed lethality template to generate surface action groups and adaptive force package and to start thinking about to increase the lethal efficacy of these ships. The U.S. Navy believes distributed lethality increases the Navy's sea control capability and expands U.S. conventional deterrence. Funding new weapons and renovated operating concept to field a more lethal and distributed force will enable us to establish sea control, even in contested area. The U.S. Navy's Surface Forces Strategy provides some useful implications for The ROK Navy. First the ROK Navy need to reconsider sea control mission. securing sea control and exploiting sea control are in a close connection. However, recently the ROK Navy only focuses on exploiting sea control, for instance land attack mission. the ROK Navy is required to reinvigorate sea control mission, such as anti-surface warfare and anti-air warfare. Second, the ROK Navy must seek the way to improve its warfighting capability. It can be achieved by developing high-edge weapons and designing renewed operating concept and embraced new weapon's extended capabilities.

THE IMPLEMENTATION METHOD AND TEST OF TELEMETRY TREND ANALYSIS IN KOMPSAT-2

  • Kim Myungja;Jung Won-Chan;Kim Jae-Hoon
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.235-238
    • /
    • 2004
  • In this paper, we will present the implementation method of telemetry trend analysis in KOMPSAT-2 (KOrea Multi Purpose SATellite II), and then we will show the test result of trend analysis with telemetry data. Trend Analysis function is one of the module of Satellite Operations Subsystem and that analyzes the telemetry data of satellite state of health and telemetry trend for operation support. With this system many clients can analyze telemetry data simultaneously.

  • PDF

Development of Indoor Navigation Control System for Swarm Multiple AR.Drone's (실내 환경에서의 AR.Drone 군집 비행 시스템 개발)

  • Moon, SungTae;Cho, Dong-Hyun;Han, Sang-Hyuck;Rew, DongYoung;Gong, HyunCheol
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.166-173
    • /
    • 2014
  • Recently, small quadcopters have been widely used in various areas ranging from military to entertainment applications because interest in the quadcopter increases. Especially, the research on swarm flight which control quadcopters simultaneously without any collision can increase success probability of a important mission. In addition the swarm flight can be applied for demonstrating choreographed aerial maneuvers such as dancing and playing musical instruments. In this paper, we introduce multiple AR.Drone control system based on motion capture for indoor environment in which quadcopters can recognize current position each other and perform scenario based mission.

Generation of an Optimal Trajectory for Rotorcraft Subject to Multiple Waypoint Constraints (다중 경로점 제한 조건하의 헬리콥터의 최적 경로 생성)

  • Choe,Gi-Yeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.50-57
    • /
    • 2003
  • Controlling rotorcraft to fly precisely through multiple, irregularly, and closely spaced waypoints is a common and practical mission. However, finding an optimal trajectory for this kind of mission is quite challenging. Usability of traditional approaches such as inverse control or direct methods to this kind of problem is limited because of either limitation on the specification of the constraints or requirement of extensive computation time. This paper proposes a method that can easily compute the full trajectory and control history for rotorcraft to pass through waypoints while satisfying other general constraints of states such as velocities and attitudes on each waypoint. The proposed method is applied to rotorcraft guidance problems of slalom and linear trajectory in the middle of general curved trajectory. The algorithm is test for various situations and demonstrates its usability.

Fine Digital Sun Sensor(FDSS) Design and Analysis for STSAT-2

  • Rhee, Sung-Ho;Jang, Tae-Seong;Ryu, Chang-Wan;Nam, Myeong-Ryong;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1787-1790
    • /
    • 2005
  • We have developed satellite devices for fine attitude control of the Science & Technology Satellite-2 (STSAT-2) scheduled to be launched in 2007. The analog sun sensors which have been continuously developed since the 1990s are not adequate for satellites which require fine attitude control system. From the mission requirements of STSAT-2, a compact, fast and fine digital sensor was proposed. The test of the fine attitude determination for the pitch and roll axis, though the main mission of STSAT-2, will be performed by the newly developed FDSS. The FDSS use a CMOS image sensor and has an accuracy of less than 0.01degrees, an update rate of 20Hz and a weight of less than 800g. A pinhole-type aperture is substituted for the optical lens to minimize the weight while maintaining sensor accuracy by a rigorous centroid algorithm. The target process speed is obtained by utilizing the Field Programmable Gate Array (FPGA) in acquiring images from the CMOS sensor, and storing and processing the data. This paper also describes the analysis of the optical performance for the proper aperture selection and the most effective centroid algorithm.

  • PDF