• 제목/요약/키워드: missing covariates

검색결과 19건 처리시간 0.023초

결측이 있는 이산형 공변량에 대한 Cox비례위험모형의 패턴-혼합 모델 (Pattern-Mixture Model of the Cox Proportional Hazards Model with Missing Binary Covariates)

  • 육태미;송주원
    • 응용통계연구
    • /
    • 제25권2호
    • /
    • pp.279-291
    • /
    • 2012
  • 공변량에 결측이 발생한 Cox 비례위험 모형을 적합할 때, 결측이 발생하는 개체를 모두 제거한 후 분석을 실시한다면 정보 손실에 의해 비효율적이고 결측의 발생 메커니즘이 완전 임의 결측(missing completely at random; MCAR)이 아니라면 모수의 추정값에 편향이 발생할 수 있다. Cox 비례위험 회귀모형의 공변량에 결측이 있는 경우 적용할 수 있는 여러 가지 방법들이 제안되어져 왔으나 이 분석들은 선택모델(selection model)에 기반하고 있다. 본 연구에서는 Little (1993)이 제안한 패턴-혼합 모델(pattern-mixture model)을 사용하여 Cox 비례위험 회귀모형에서 생존시간과 결측 메커니즘의 결합분포를 모델화 하고, 여러 가지 제약에 근거한 생존 분석의 결과를 비교하였다. 모의실험을 통해서 패턴-혼합 모델의 제약(restrictions)에 따른 모수 추정의 민감도를 확인하였고 결측을 무시한 채 분석한 결과 및 선택모형에 근거한 분석결과와 비교하였다. 패턴-혼합 모델의 제약에 따라 공변량의 결측으로 인한 모수 추정의 민감성 정도를 쥐백혈병 자료 예제를 통해 설명하였다.

Comparison of missing data methods in clustered survival data using Bayesian adaptive B-Spline estimation

  • Yoo, Hanna;Lee, Jae Won
    • Communications for Statistical Applications and Methods
    • /
    • 제25권2호
    • /
    • pp.159-172
    • /
    • 2018
  • In many epidemiological studies, missing values in the outcome arise due to censoring. Such censoring is what makes survival analysis special and differentiated from other analytical methods. There are many methods that deal with censored data in survival analysis. However, few studies have dealt with missing covariates in survival data. Furthermore, studies dealing with missing covariates are rare when data are clustered. In this paper, we conducted a simulation study to compare results of several missing data methods when data had clustered multi-structured type with missing covariates. In this study, we modeled unknown baseline hazard and frailty with Bayesian B-Spline to obtain more smooth and accurate estimates. We also used prior information to achieve more accurate results. We assumed the missing mechanism as MAR. We compared the performance of five different missing data techniques and compared these results through simulation studies. We also presented results from a Multi-Center study of Korean IBD patients with Crohn's disease(Lee et al., Journal of the Korean Society of Coloproctology, 28, 188-194, 2012).

대체방법별 GEE추정량 비교 (Comparison of GEE Estimators Using Imputation Methods)

  • 김동욱;노영화
    • 응용통계연구
    • /
    • 제16권2호
    • /
    • pp.407-426
    • /
    • 2003
  • 본 연구에서는 범주형 반복측정자료의 일반화추정방정식(GEE)모형에서 결측이 발생할 경우 결측값 대체(imputation)방법들에 대한 성능을 비교하고자 한다. 설명변수 X가 부분적으로 결측을 갖는 경우 GEE추정량을 계산할 수 없다. 본 논문에서는 시점에 따라 값이 변하는 설명변수에 결측이 있는 경우 GEE모형에서 결측값을 추정하는 7가지의 대체방법을 다루며, 실제자료와 모의실험을 통하여 대체방법별 GEE추정량의 성질을 연구한다. 대체방법별 GEE추정량의 성능을 비교하기 위해 우리는 반응변수가 범주형인 반복측정모형에서 완전자료의 GEE추정량과 완전자료에서 결측을 생성하여 결측값에 각 대체방법을 적용하여 대체한 후 구한 GEE추정량을 비교한다. 대체방법으로는 (1) 단순삭제 (2) 표본 평균대체 (3) 행 평균대체 (4) 횡 시점 회귀대체 (5) 이월대체 (6) 베이지안 붓스트랩 (7) 근사적 베이지안 붓스트랩에 대해서 살펴본다. 결측과정(missing mechanism)은 무시할 수 있는 무응답(ignorable nonresponse)을 가정하며, 결측 발생에 대해서는 원자료의 시점 무응답 패턴(wave nonresponse pattern)을 고려하여 발생시키거나 또는 시점 무응답 패턴을 고려하지 않고 단순임의추출로 결측을 발생시키는 방법을 각각 고려한다.

결측 공변량을 갖는 혼합회귀모형에서의 EM 알고리즘 (The EM algorithm for mixture regression with missing covariates)

  • 김형민;함건희;서병태
    • 응용통계연구
    • /
    • 제29권7호
    • /
    • pp.1347-1359
    • /
    • 2016
  • 혼합회귀모형은 반응 변수와 공변량 사이의 관계를 규명하는 유용한 통계적 모형으로 여러 분야에서 사용되어지고 있다. 하지만 실제로 혼합회귀모형을 이용하여 분석을 하는 과정에서 공변량이 결측값을 포함하는 문제는 흔하게 발생하며, 발생하는 결측의 유형 또한 다양하게 나타난다. 이러한 경우에 있어서 본 논문에서는 최대우도추정량을 구하기 위한 EM 알고리즘을 제안하고자 한다. 제안된 EM 알고리즘의 효용성을 모의실험을 통해 확인하였으며 또한 사례연구를 통해 제시된 방법이 어떻게 사용될수 있는지와 그 효용성을 함께 확인하였다.

Application of Multiple Imputation Method in Analyzing Data with Missing Continuous Covariates

  • Ghasemizadeh Tamar, S.;Ganjali, M.
    • 응용통계연구
    • /
    • 제21권4호
    • /
    • pp.659-664
    • /
    • 2008
  • Missing continuous covariates are pervasive in the use of generalized linear models for medical data. Multiple imputation is the most common and easy-to-do method of dealing with missing covariate data. However, there are always serious warnings in using this method. There should be concern to make imputed values more proper. In this paper, proper imputation from posterior predictive distribution is developed for implementing with arbitrary priors. We use empirical distribution of the posterior for approximating the posterior predictive distribution, to sample from it. This method is preferable in comparison with a presented imputation method of us which uses a full model to impute missing values using available software. The proposed methods are implemented on glucocorticoid data.

시간-종속적 공변량이 포함된 이분형 반복측정자료의 GEE를 이용한 분석에서 결측 체계에 따른 회귀계수 추정방법 비교 (Comparison of GEE Estimation Methods for Repeated Binary Data with Time-Varying Covariates on Different Missing Mechanisms)

  • 박보람;정인경
    • 응용통계연구
    • /
    • 제26권5호
    • /
    • pp.697-712
    • /
    • 2013
  • 다시점 자료 연구에서 일반화추정방정식은 가상관행렬을 잘못 가정하더라도 모수의 일치추정량을 도출하므로 많이 이용된다. 하지만, 결측 체계가 완전임의결측이 아닌 경우에는 편의추정량을 제공하고, 시간-종속적 공변량이 포함된 경우에는 가상관행렬에 따라 회귀계수 추정값이 다르게 도출될 수 있는 문제점이 있다. 결측 체계가 임의결측인 경우에 발생하는 문제를 해결하기 위해 가중 방법과 다중대체 방법을 사용하는 것이 제안되었다. 본 논문에서는 시간-종속적 공변량이 포함된 이분형 반복측정자료를 GEE를 이용하여 분석할 때 다양한 결측 체계에서 일반화추정방정식 방법, 가중 방법, 다중대체 방법의 회귀계수 추정에 대한 로버스트성과 정확성을 모의실험을 통하여 비교해 보았다. 세 가지 방법 모두에서 시간-종속적 공변량의 회귀계수가 시간-독립적 공변량의 회귀계수에 비해 가상관행렬에 따라 추정값의 차이가 크게 나타났다. 다른 두 방법에 비해 다중대체 방법이 가상관행렬의 형태에 대해 더 로버스트하고 편의도 작은 추정치를 도출하였다.

한 인구학도의 회고

  • 김택일
    • 한국인구학
    • /
    • 제11권1호
    • /
    • pp.1-13
    • /
    • 1988
  • 여기서는 많은 수의 비관측사례로부터 발생할 수 있는 표본의 편의(bias) 문제를 탐구한다. 이 연구는 본래 일본 후생성이 1989년 실시한 <가족주기와 가구형태에 대한 인구학적 조사> 자료를 이용하여 노인부보와 자녀간 근접성을 분석하는 목적에서 이루어졌다. 그런데 <가족주기와 가구형태에 대한 인구학적 조사>는 노인부모를 대상으로 한 조사가 아니라 전체 가구 일반에 대한 조사이기 때문에 노인부모에 대한 많은 정보를 손상하고 있었다. 또한 본 조사는 가구주를 통하여 가족원에 대한 정보를 획득하는 방식으로 설계되었기 때문에 가족원에 대한 정보가 완전하지 못하였다. 나아가 비관측사례의 유형을 보면 여러 항목들이 동시적으로 관측되지 않고 있었다. 이와 같이 복합적 메커니즘에서 발생한 비관측 사례는 분석의 편의를 초래할 위험이 크다. 우선, 많은 수의 비관측사례로 표준오차를 잘못 추정할 소지가 크다. 더욱이 사례들이 선택적으로 관측되지 않았다면 관측된 자료에 따른 추정을 심각한 편의를 포함할 수 있다. 이와 같이 손상된 자료로부터 발생할 수 있는 추정 편의를 개선하기 위하여 여기서는 두 가지 기법을 활용하였다. 첫째, 관측치와 공변인간의 관계에 기초하여 비관측사례를 추정하는 방법으로 EM 알고리듬을 활용하였다. 둘째, 관찰의 선택성에서 비롯된 추정 편의를 개선하기 위하여 이단계(two stage) 모형을 활용하였다.

  • PDF

누락된 공변량을 가진 원인별 비례위험모형의 분석 (Analysis of the cause-specific proportional hazards model with missing covariates)

  • 이민정
    • 응용통계연구
    • /
    • 제37권2호
    • /
    • pp.225-237
    • /
    • 2024
  • 경쟁위험자료에서 일부 공변량들이 연구대상들의 일부분에 대해 관측되지 않을 수 있다. 그런 경우 결측된 공변량 값을 가진 연구대상들을 분석에서 제외하는 것은 편향된 추정치와 효율성 손실이 발생할 수 있다. 본 논문에서는 누락된 공변량을 가진 원인별 비례위험모형의 회귀모수 추정을 위해 다중대체 방법과 증대된 역 확률 가중 방법을 연구하였다. 모의실험을 통해 다중대체 방법과 증대된 역 확률 가중 방법에 의해 구해진 추정량의 성능을 평가한 결과, 이 방법들이 잘 수행됨을 확인하였다. 미국 국립암연구소의 전립선, 폐, 대장, 난소 암 선별 시험 연구에서 제공하는 종양 크기의 값이 누락된 유방암 자료에 대해 암 사망 위험률과 다른 원인 사망 위험률에 유의한 영향을 미치는 요인을 파악하기 위해 다중대체 방법과 증대된 역 확률 가중 방법을 적용하였다. 다중대체 방법과 증대된 역 확률 가중 방법에 의해 원인별 비례위험모형을 적합한 결과, 인종, 기혼여부, 병기, 분화도, 종양의 크기는 유방암 사망 위험률에 유의한 영향을 미치는 요인들이였으며, 병기가 유방암 사망 위험률을 높이는데 가장 큰 영향을 미치는 요인임을 확인하였다. 진단시 연령과 종양의 크기는 다른 원인 사망 위험률을 높이는데 유의한 영향을 미치는 요인이였다.

A case study of competing risk analysis in the presence of missing data

  • Limei Zhou;Peter C. Austin;Husam Abdel-Qadir
    • Communications for Statistical Applications and Methods
    • /
    • 제30권1호
    • /
    • pp.1-19
    • /
    • 2023
  • Observational data with missing or incomplete data are common in biomedical research. Multiple imputation is an effective approach to handle missing data with the ability to decrease bias while increasing statistical power and efficiency. In recent years propensity score (PS) matching has been increasingly used in observational studies to estimate treatment effect as it can reduce confounding due to measured baseline covariates. In this paper, we describe in detail approaches to competing risk analysis in the setting of incomplete observational data when using PS matching. First, we used multiple imputation to impute several missing variables simultaneously, then conducted propensity-score matching to match statin-exposed patients with those unexposed. Afterwards, we assessed the effect of statin exposure on the risk of heart failure-related hospitalizations or emergency visits by estimating both relative and absolute effects. Collectively, we provided a general methodological framework to assess treatment effect in incomplete observational data. In addition, we presented a practical approach to produce overall cumulative incidence function (CIF) based on estimates from multiple imputed and PS-matched samples.

불완전한 자료에 대한 보완기법(EM 알고리듬과 2단계(Two Stage) 모델) (EM Algorithm and Two Stage Model for Incomplete Data)

  • 박경숙
    • 한국인구학
    • /
    • 제21권1호
    • /
    • pp.162-183
    • /
    • 1998
  • 여기서는 많은 수의 비관측사례로부터 발생할 수 있는 표본의 편의(bias) 문제를 탐구한다. 이 연구는 본래 일본 후생성이 1989년 실시한 <가족주기와 가구형태에 대한 인구학적 조사> 자료를 이용하여 노인부보와 자녀간 근접성을 분석하는 목적에서 이루어졌다. 그런데 <가족주기와 가구형태에 대한 인구학적 조사>는 노인부모를 대상으로 한 조사가 아니라 전체 가구 일반에 대한 조사이기 때문에 노인부모에 대한 많은 정보를 손상하고 있었다. 또한 본 조사는 가구주를 통하여 가족원에 대한 정보를 획득하는 방식으로 설계되었기 때문에 가족원에 대한 정보가 완전하지 못하였다. 나아가 비관측사례의 유형을 보면 여러 항목들이 동시적으로 관측되지 않고 있었다. 이와 같이 복합적 메커니즘에서 발생한 비관측 사례는 분석의 편의를 초래할 위험이 크다. 우선, 많은 수의 비관측사례로 표준오차를 잘못 추정할 소지가 크다. 더욱이 사례들이 선택적으로 관측되지 않았다면 관측된 자료에 따른 추정을 심각한 편의를 포함할 수 있다. 이와 같이 손상된 자료로부터 발생할 수 있는 추정 편의를 개선하기 위하여 여기서는 두 가지 기법을 활용하였다. 첫째, 관측치와 공변인간의 관계에 기초하여 비관측사례를 추정하는 방법으로 EM 알고리듬을 활용하였다. 둘째, 관찰의 선택성에서 비롯된 추정 편의를 개선하기 위하여 이단계(two stage) 모형을 활용하였다.

  • PDF