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Abstract
In many epidemiological studies, missing values in the outcome arise due to censoring. Such censoring is

what makes survival analysis special and differentiated from other analytical methods. There are many methods
that deal with censored data in survival analysis. However, few studies have dealt with missing covariates in
survival data. Furthermore, studies dealing with missing covariates are rare when data are clustered. In this paper,
we conducted a simulation study to compare results of several missing data methods when data had clustered
multi-structured type with missing covariates. In this study, we modeled unknown baseline hazard and frailty
with Bayesian B-Spline to obtain more smooth and accurate estimates. We also used prior information to achieve
more accurate results. We assumed the missing mechanism as MAR. We compared the performance of five
different missing data techniques and compared these results through simulation studies. We also presented
results from a Multi-Center study of Korean IBD patients with Crohn’s disease (Lee et al., Journal of the Korean
Society of Coloproctology, 28, 188–194, 2012).

Keywords: Bayesian adaptive B-spline, clustered data, MICE, missing covariates, multiple impu-
tation, single imputation

1. Introduction

In epidemiological studies, missing covariate is a common problem in survival data and is often en-
countered in many statistical applications. The easiest way to deal with missing covariates is to discard
missing observations and use only completely observed subjects. However, using only observed sub-
jects may lead to biased estimates of parameters. As the proportion of missing data increases, there
will be a substantial loss of efficiency. Rather than discarding missing data, statistical approaches can
be applied under the presence of missing covariates. Zhou and Pepe (1995) have proposed an esti-
mated partial likelihood method to estimate relative risk parameters. Lipsitz and Ibrahim (1996) have
extended the EM by the method of weights to survival outcomes whose distributions may not fall in
the class of generalized linear models. Chen and Little (1999) have used a nonparametric maximum
likelihood to estimate regression parameters in a proportional hazards regression model with missing
covariates. All these methods mentioned above can be used with the Cox model for univariate survival
data with missing covariates. Imputing the missing data can be performed instead of using a likeli-
hood based method to handle missing covariates. Likelihood based methods can be sophisticated.
They generally require problem-specific programs. However, imputing the missing data enables the
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use of whole data and analysis can be performed easily using existing methods. Marshall et al. (2010)
have compared several imputing methods (complete case (CC) analysis, single imputation (SI), and
five multiple imputation methods) for handling missing covariates in univariate survival data through
simulations. With or without imputation, most papers are based on the frequentist maximum like-
lihood method. Bayesian approaches have also merged and recently applied to survival data more
frequently compared to the frequentist maximum likelihood method. Sharef et al. (2010) proposed
a Bayesian adaptive B-spline estimation when clustered survival data are complete without missing
covariates. They modeled the unknown baseline hazard and density of the random effects using a
penalized mixture of B-splines. Inclusion of prior information of baseline hazard function and frailty
density made the model more flexible. Using the spline component also improved the performance
when the hazard or the frailty density was distinctly non-smooth in nature Sharef et al. (2010).

In this paper, we extended the Bayesian adaptive B-spline estimation method to clustered survival
data with missing covariates. This study compares built-in imputation methods with CC analysis in
the presence of missing covariates under clustered survival data using a Bayesian approach. We used
the Bayesian adaptive B-spline estimation method proposed by Sharef et al. (2010) after imputing
the missing covariates. We conducted a simulation study and compared five different missing data
techniques: 1) complete case (CC) analysis, 2) single imputation (SI) using predictive mean match-
ing (PMM), 3) MI-MICE, 4) MI-MICE-PMM, and 5) MI-AregImpute (the last three techniques are
multiple imputation techniques using multivariate imputation by chained equations (MICE) available
within R statistical software). The remainder of the paper is organized as follows. In Section 2, we
briefly described each of the five imputation methods. We introduced how we extended the Bayesian
adaptive B-spline estimation method when the data had missing covariates in Section 3. Results of the
simulation study are summarized in Section 4. We then showed results applying to Crohn’s disease
data in Section 5. We then concluded the study with a brief discussion in Section 6.

2. Missing data methods

Missing covariates are imputed through four different imputation methods with CC analysis. These
imputation methods included one SI and three multiple imputation methods. We will briefly describe
each method below.

2.1. Complete case analysis

The simplest way to handle missing values in the data is to use only observed values (that is, only
CC is used). The CC estimator is unbiased when the missing mechanism is missing complete at
random (MCAR). However, if there are many variables with missing values, then a large proportion
of observations may be dropped. This can cause bias in missing at random (MAR) and lose efficiency
in MCAR.

2.2. Single imputation using predictive mean matching

Imputing a missing value with a predicted value is called predictive mean matching. It is used to
impute a value randomly from a set of observed values whose predicted values are closest to predicted
values from a specified regression model (Heitjan and Little 1991; Schenker and Taylor 1996).

Let Y = (Y1, . . . , Yn) be a n × p matrix composed of n subjects with p variables. Let Yi =

(Yi1, . . . , Yip) be one of incomplete variables and denote Yobs = (Yobs
1 , . . . ,Yobs

p ) and Ymis = (Ymis
1 , . . . ,

Ymis
p ) as observed data and missing data in Y , respectively. For each incomplete subject, the con-
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ditional expected value µ̂ = E(Ymis|Yobs) is estimated and the missing value is imputed through the
nearest neighborhood subject. When a continuous random variable is imputed, this method is straight-
forward. However, it might be more complicated for a categorical variable.

2.3. Multiple imputation

Multiple imputation is a three-step approach in estimating incomplete data regression models (Rubin,
1987). The notation of Y is the same as described above. Q is denoted as the quantity of interest. The
first step is to create plausible values for missing observations from a specifically modeled distribution
that can reflect uncertainty about the nonresponse model. Usually, five to ten imputed datasets are
created. The imputed dataset is denoted as Y (1), . . . , Y (m), where m is the number of imputations. The
next step is to analyze the imputed data using typical methods we would have used for complete data.
Denote m estimates as Q̂(1), . . . , Q̂(m) for each imputed dataset. The last step is to combine results for
each imputed dataset and obtain pooled estimate Q̄ = (1/m)

∑m
i=1 Q̂(i). Compared with SI, multiple

imputation methods can minimize standard error and increase efficiency of estimates. However, they
are more difficult to perform.

The MI-MICE is an imputation method using multivariate imputation by chained equations. MICE
is a software for imputing incomplete multivariate data by fully conditional specification. It appeared
in the R package library in 2001. Fully conditional method specifies the multivariate imputation model
on a variable-by-variable basis by a set of conditional densities, one for each for incomplete variable
(van Buuren, 2007). Under the assumption that a multivariate distribution exists from conditional
distributions, MICE constructs a Gibbs sampler from specified conditionals. Let θθθ = (θ1, . . . , θp)
denote the vector of p unknown parameters of the multivariate distribution of Y . That is, starting
from observed marginal distributions, the ith iteration of chained equations is a Gibbs sampler that
successively draws.

θ∗(t)1 ∼ P
(
θ1|Yobs

1 ,Y (t−1)
2 , . . . ,Y (t−1)

p

)
, Y∗(t)1 ∼ P

(
Y1|Yobs

1 , Y (t−1)
2 , . . . , Y (t−1)

p , θ∗(t)1

)
,

...
...

θ∗(t)p ∼ P
(
θp|Yobs

p ,Y (t−1)
1 , . . . , Y (t−1)

p−1

)
, Y∗(t)p ∼ P

(
Yp|Yobs

p ,Y (t−1)
1 , . . . ,Y (t−1)

p−1 , θ
∗(t)
p

)
,

where Y (t)
i = (Yobs

i ,Y (t)
i ) is the ith imputed variable at iteration t. This method has different names,

including regression switching (van Buuren et al., 1999), variable-by-variable imputation (Brand,
1999), and chained equations. In this paper, we used imputation methods built in the MICE software
in the R package library.

MI-MICE-PMM is a method that imputes missing values under multiple imputation with regres-
sion switching (MICE) using predictive mean matching (PMM). The imputing method is the same as
the SI except that the PMM imputation method is done in m imputed datasets Y (1), . . . ,Y (m).

Lastly, the flexible additive imputation model with PMM under multiple imputation method (MI-
AregImpute) is performed under the library ‘aregImp’ in the MICE package. This method takes all
aspects of uncertainty in imputations into account by using bootstrap to approximate the process of
drawing predicted values from a full Bayesian predictive distribution (Frank, 2010). For each multiple
imputation, different bootstrap resamples are used and a flexible additive model is fitted on a sample
with replacement from the original data. This model is then used to predict all original values for the
target variable.
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3. Statistical model

Clustered failure time data occur when study subjects from the same cluster share common charac-
teristics such that failure times within the same cluster are correlated. One possible mechanism is the
existence of a common risk. When this common risk acts as a factor on hazard function, it is called
frailty. The frailty model was first named by Vaupel et al. (1979). It was studied by Clayton (1978)
for multivariate failure time data. It is usually used for clustered failure time data.

Let Xi j and Ci j denote the failure and censoring time of the j (= 1, . . . ,mi)th subject in the i (=
1, . . . , M)th cluster, respectively. Furthermore, let Zi j be a p vector fixed covariates. We first assumed
that Zi j had no missing values. The observed subject took the form Ti j = min(Xi j,Ci j) and δi j =

I(Xi j ≤ Ci j).The correlation between subjects in the same cluster was incorporated through random
effects or frailties Ui(i = 1, . . . , M). Frailties represent the heterogeneity of each cluster. They are
assumed to have a particular distribution f (·). We assumed that censoring time was conditionally
independent of the failure time given covariates and frailties. The hazard function for subject j in
cluster i is given by the following:

λi j(t|UUU,ZZZ) = Uiλ0(t) exp
(
Zt

i jβββ
)
, (3.1)

where UUU = (Ui, . . . ,UM)T , ZZZ = {Zi j, i, . . . , M; j = 1, . . . ,mi}, and βββ is a p-dimensional vector of
regression coefficients.

In this study, we used mixtures of B-spline for the baseline hazard λ0(·) and the density of the
frailty f (·) in formula (3.1) as noted in Sharef et al. (2010). We followed their notations. Markov
Chain Monte Carlo (MCMC) was then used to obtain regression coefficients. For the baseline hazard
function λ0(·), a non-negative linear combination of Kλ B-spline basis functions Bλk(·) was used. For
t ≥ 0, the baseline hazard function was presented as

λ0 (t|θλθλθλ, ηληληλ, ϕλ) = λ0p(t|ηληληλ) + ϕλ

 Kλ∑
k=1

Bλk(t)ωλk − λ0p(t|ηληληλ)

 , (3.2)

where θλθλθλ is the spline parameter with weight ωλk = eθλk for each basis function, λ0pλ0pλ0p(·|ηληληλ) denotes the
hazard function for a specified parametric family, and ηληληλ is the parameter of the parametric family.
Including a parametric part enabled us to model the baseline hazard and frailty density curve smoother
with less variable fits. Weibull or lognormal distribution is widely used. ϕλ ∈ [0, 1] is the weight that
specifies the degree of confidence in the parametric component. For example, ϕλ = 0 will lead to a
purely parametric Bayesian survival model.

Next, the frailty density function can be written as

f (x|θuθuθu, ηuηuηu, ϕu) = ϕu

 Ku∑
k=1

B̃uk(x)ωuk + (1 − ϕu) fp(x|ηuηuηu)

 , (3.3)

where θuθuθu is the spline parameter and fp(·|ηuηuηu) is the density function for a specified parametric family
of probability distributions with parameters ηuηuηu. The normalized B-spline basis function is written as
B̃uk(x) = Buk(x) · (

∫ ∞
−∞ Buk(s)ds)−1 for x ≥ 0 with weight ωuk = {exp(θuk)/

∑Ku
l=1 exp(θul)} · ϕu ∈ [0, 1] is

the weight for the parametric component.
For the regression parameter βββ and spline parameters θλθλθλ and θuθuθu, multivariate Gaussian distribution

with variances σ2
β, σ

2
λ, σ

2
u is assumed, respectively. They are independent of each other. The prior

distribution of σ2
β, σ

2
λ, σ

2
u is assumed to be multivariate Gaussian. Penalty functions pλ(θλθλθλ) and pu(θuθuθu)
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are incorporated to induce smoothness in B-spline coefficients and avoid over fitting. For weights
ϕϕϕ = (ϕλ, ϕu) in formula (3.2) and (3.3), Beta priors with hyperparameters αϕu and αϕλ can be used.

Let θθθ = (θλθλθλ, θuθuθu) denote the set of spline parameters and σσσ = (σ2
β, σ

2
λ, σ

2
u) denote the set of vari-

ance parameters. For parametric distribution, denote the set of parameters as ηηη = (ηληληλ, ηuηuηu) with prior
distribution πλ(ηλ|τλ) and πu(ηu|τu), respectively. The prior set is denoted as τττ = (τλτλτλ, τuτuτu). It may have
hyperparameters αλαλαλ = (αηλ, αηu). The log of the posterior density is then given by

l(UUU, θθθ,ηηη,ϕϕϕ,σσσ,τττ|TTT , δδδ,ZZZ)

=
∑
i, j

δi j

[
log(Ui) + log λ0(Ti j|θλθλθλ, ηληληλ, ϕλ)

]
−

∑
i, j

δi jUiΛ0(Ti j|θλθλθλ, ηληληλ, ϕλ)e
zT
i jβzT
i jβzT
i jβ

+
∑

i

log f (Ui|θuθuθu, ηuηuηu, ϕu)

− p
2

logσβ2 +
βTββTββTβ

2σβ2
−

∑
d∈{λ,u}

{
Kd

2
logσd2 +

pd(θdθdθd)
2σd2

}
−

∑
d∈{β,λ,u}

{
(αd1 + 1) logσd2 +

αd2

σd2

}
(3.4)

+ log
{
ϕ

(αϕλ1−1)
λ (1 − ϕλ)(αϕλ2−1)

}
+ log

{
ϕ

(αϕu1−1)
u (1 − ϕu)(αϕu2−1)

}
(3.5)

+ log πλ
(
ηληληλ|τηλτηλτηλ

)
+ log πu

(
ηuηuηu|τηuτηuτηu

)
+ log πη

(
ηuηuηu|τηuτηuτηu

)
, (3.6)

where (3.4) corresponds to log likelihood l(UUU, θθθ,σσσ|ηηη,ϕϕϕ,TTT , δδδ,ZZZ), (3.5) corresponds to Beta priors on
weights, and the term (3.6) corresponds to the priors on parametric components. By maximizing the
conditional log-likelihood, spline and parametric coefficients θλθλθλ, θuθuθu, ηληληλ, ηuηuηu are initialized. After initial
values are obtained, each set of parameters is updated by Gibbs sampling and Metropolis Hastings
MCMC.

When there is no missing covariate, parameters of interest can be obtained as shown above. Since
there are missing covariates in the data, we used imputation methods to fill in the missing values. In
addition, we also performed CC analysis and obtained coefficients of parameters. Let the complete
data be noted by Y = (Yobs,Ymis), where Yobs and Ymis are observed part and missing part of Y ,
respectively. Also, let P(Y |θ) model be the complete data and θ denote parameters of interest. The
posterior predictive distribution for Ymis is given by:

P(Ymis|Yobs) =
∫

P(Ymis|Yobs, θ)P(θ|Yobs)dθ, (3.7)

where

P(θ|Yobs) ∝ P(θ)
∫

P(Yobs,Ymis|θ)dYmis. (3.8)

The basic scheme of the process is given as:

Step 1: For each cluster i = 1, . . . ,M, repeat the following steps for j = 1, . . . ,Q plausible imputed
data sets.

1. Imputation step: Generate missing values Y j+1
mis from P(Ymis|Yobs, θ

j).
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2. Posterior step: Draw parameters θ j+1 from P(θ|Yobs,Y
j+1

mis ).

Repeating the above steps will generate the following Markov Chain(
Y1

mis, θ
1
)
,
(
Y2

mis, θ
2
)
, . . . ,

(
Y j

mis, θ
j
)
. (3.9)

These two steps are iterated with a starting value θ0 until the distribution P(Ymis|Yobs, θ) is
stabilized.

Step 2: For Q imputed data sets, model the baseline hazard function and the frailty density function
as formula (3.2) and (3.3), respectively. By applying Bayesian method, estimate coefficients
estimator of interest in each Q imputed data sets and denote them as θ̂(111), θ̂(222), . . . , θ̂(QQQ).

Step 3: Combine Q estimates θ̂(111), θ̂(222), . . . , θ̂(QQQ) into θ̂ which is the mean of Q estimates. For CC
analysis, subjects with missing values are deleted. For SI, only step 1 is needed.

4. Simulation studies

We conducted a simulation study to investigate the performance of various missing data methods
under several different data settings. Three covariates Zi j1,Zi j2,Zi j3 (i = 1, . . . ,M, j = 1, . . . ,mi)
are considered, where Zi j1 has no missing values and Zi j2,Zi j3 have missing values. We assumed
the missing mechanism as MAR. Therefore, the missingness in covariates Zi j2,Zi j3 only depends
on observed values. We set the distribution of Zi j1 and Zi j3 as

(
Z1
Z3

)
∼ MVN

((
2
1

)
,
(

0.50 0.15
0.15 0.25

))
and

assumed Zi j2 had a Bernoulli distribution with mean p = exp(−1 + 2 × Zi j1)/{1 + exp(−1 + 2 × Zi j1)}.
Frailties Ui were sampled from LN(1, 0.252). We set coefficients as βββ = (β1, β2, β3) = (1,−1, 1). We
fixed hyperparameters α = 0.01 and all variances of frailties as σ2

λ = σ2
u = 0.1 to achieve suitably

noninformative priors. For each cluster i, sample mi clustered failure times Xi j from exponential
distribution with intensity Ui exp(β1Zi j1 + β2Zi j2 + β3Zi j3). Censoring time Ci j was also generated
from exponential distribution with appropriate mean which resulted in 20% of censoring rate. Then
the observed failure time was obtained as Ti j = min(Xi j,Ci j) and the censoring indicator as δi j =

I(Xi j ≤ Ci j). We set the number of clusters as M = 10 and 100 with cluster size as mi = 50 and 5,
respectively. Therefore, the whole sample size was 500. For Weibull baseline and lognormal frailty
distribution, we set a Beta(1, 2) prior on the weight.

Missing data were then generated as:

p(ri jk = 1|xi jxi jxi j, zi jkzi jkzi jk, ρ) =
exp(ρ0 + ρ1h(xi j) + ρ2zi j1 × h(xi j))

1 + exp(ρ0 + ρ1h(xi j) + ρ2zi j1 × h(xi j))
, k = 2, 3, (4.1)

where ri jk indicates whether zi jk is missing and h(xi j) is an indicator function which is 1 if xi j is in the
last quartile of the survival time and 0 otherwise. ρρρ = (ρ0, ρ1, ρ2) = (−5.45,−2.50, 3), (−4.71,−2.14, 3),
(−3.24,−1.39, 3), and (−1.46,−0.68, 3), for 5%, 10%, 25%, and 50% missing, respectively. We repli-
cated the simulation 300 times. Table 1 shows the bias of the regression coefficient estimate β̂̂β̂β and the
estimated standard deviation for frailty σ̂u under various missing rates with five different missing data
methods when M = 10 and mi = 50. Figure 1 shows a summary of Table 1. We denote the notation of
covariate Zi j1,Zi j2,Zi j3 as Z1,Z2, and Z3 respectively. For covariate Z1, the missing rate corresponds
to the whole data missing rate since Z1 has no missing value. We wanted to see how the bias of β̂1 was
affected by the missing rate of the whole data. CC has the smallest bias among all other imputation
methods when a missing rate is rather small. However, when the missing rate is greater than 10%, the
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Table 1: Bias of β̂̂β̂β and σ̂u under various missing rates using five different missing data methods when M = 10
and mi = 50

Missing Bias of β̂̂β̂β Bias of σ̂urate β̂1 β̂2 β̂3

CC

5% 0.011 −0.051 −0.052 −0.005
10% 0.030 0.022 −0.104 −0.012
25% −0.070 0.174 −0.239 −0.024
50% −0.377 0.299 −0.348 −0.034

SI

5% −0.114 −0.024 −0.053 0.006
10% −0.130 0.053 −0.108 0.001
25% −0.128 0.157 −0.217 0.012
50% −0.138 0.352 −0.266 −0.019

MICE

5% −0.114 −0.025 −0.051 0.006
10% −0.133 0.054 −0.107 0.003
25% −0.131 0.156 −0.216 0.006
50% −0.143 0.336 −0.255 −0.017

MICE-PMM

5% −0.115 −0.031 −0.051 0.006
10% −0.134 0.045 −0.106 0.002
25% −0.128 0.163 −0.215 0.007
50% −0.143 0.322 −0.258 −0.019

AregImpute

5% −0.037 −0.049 −0.051 0.000
10% −0.015 0.003 −0.098 −0.009
25% 0.006 0.096 −0.230 −0.015
50% −0.146 0.176 −0.351 −0.036

bias is increased rapidly. This shows the explicit drawback of CC analysis. AregImpute showed the
best performance for a missing rate of 10% and 15%. SI, MICE, and MICE-PMM imputation meth-
ods showed rather unbiased results when missing rate was less than 50%. Especially for AregImpute,
the bias decreased even when the missing rate increased up to 25%. This method had the smallest bias
among the five methods for almost every missing rate tested.

For discrete covariate Z2, at missing rate up to 5%, the SI method had the smallest bias while
CC had the largest bias. This conflicted with the result of covariate Z1, where CC had the smallest
bias under a 5% missing rate. SI, MICE, and MICE-PMM showed similar results. However, SI had
the largest bias when the missing rate was 50%. AregImpute had the smallest overall bias among all
missing data methods. For continuous variable Z3, with missing rate up to 25%, all methods showed
similar results with fine estimate results. However, when the missing rate was increased, CC and
AregImpute had the largest bias while MICE and MICE-PMM methods showed the best performance.

Table 2 shows the bias of regression coefficient estimates β1, β2, β3 and the estimated standard
deviation for frailty σ̂u when the number of cluster is M = 100 and the cluster size is mi = 5.
Figure 2 summarizes the data in Table 2 as a graph. For all three covariates, performances of the five
different missing data methods shown in Figure 2 are similar to those in Figure 1. For covariate Z1,
the AregImpute method showed the smallest bias among all missing data methods.

For covariate Z2, MICE, and MICE-PMM showed a good performance at missing rate below
10%. However, the AregImpute method showed the best performance when the missing rates are
above 25%. For covariate Z3, the SI method had the smallest bias for all missing rates. This shows
that the SI method is not inferior to MI methods. However, CC showed the worst performance among
all missing data methods at all missing rates.

In Figure 3, the bias of the frailty standard deviation estimate σ̂u is shown under the same settings
of Figure 1 and Figure 2. Figure 3(a) shows regression coefficient estimates of the frailty when
the number of clusters and cluster size are 10 and 50, respectively. Figure 3(b) shows regression
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Figure 1: Regression coefficient estimates using five different missing data methods when M = 10 and mi = 50
under various missing rates.
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Table 2: Bias of β̂̂β̂β and σ̂u under various missing rates using five different missing data methods when M = 100
and mi = 5

Missing Bias of β̂̂β̂β Bias of σ̂urate β̂1 β̂2 β̂3

CC

5% 0.025 −0.077 −0.043 0.113
10% 0.071 −0.002 −0.086 0.121
25% −0.026 0.124 −0.217 0.151
50% −0.338 0.223 −0.299 0.214

SI

5% −0.092 −0.047 −0.026 0.118
10% −0.087 0.010 −0.064 0.131
25% −0.087 0.108 −0.165 0.139
50% −0.103 0.297 −0.202 0.122

MICE

5% −0.095 −0.044 −0.029 0.120
10% −0.085 0.008 −0.070 0.130
25% −0.090 0.098 −0.173 0.132
50% −0.106 0.296 −0.212 0.120

MICE-PMM

5% −0.098 −0.037 −0.030 0.120
10% −0.094 0.020 −0.068 0.126
25% −0.095 0.098 −0.172 0.134
50% −0.110 0.303 −0.205 0.118

AregImpute

5% −0.021 −0.078 −0.036 0.112
10% 0.034 −0.040 −0.078 0.125
25% 0.037 0.047 −0.200 0.140
50% −0.114 0.143 −0.298 0.182

coefficient estimates of the frailty when the number of clusters and the cluster size are 100 and 5,
respectively. We can see that the bias is affected by the cluster size rather than the number of clusters
since Figure 3(a) shows a rather small bias, with SI and MICE-PMM showing the smallest bias.
However, the bias is rather large in Figure 3(b).

5. Example

We applied the missing data methods to analyze the data from biopsy-proven Crohn’s Disease patients
who underwent abdominal surgery from January 2000 to December 2009 (Lee et al., 2012). Crohn’s
disease (CD) is heterogeneous in nature. The only consistent factor is its inconsistency. There have
been studies revealing risk factors for post-operative recurrences. However, only a few studies have
evaluated risk factors for reoperation after the primary surgery in CD patients. The primary outcome
of the study was time to have re-operation from CD recurrence. Data were collected from 627 patients
in 18 different hospitals. Each hospital corresponded to a cluster. Patients in each cluster corresponded
to cluster subjects. The number of cluster size ranged from 2 to 150 and the median size was 15. The
following covariates were considered as risk factors: age at diagnosis, tumor location, and tumor
behavior. These three variables were considered as Montreal classification variables. All these vari-
ables were categorical variables. We provided the basic description of each covariate and its missing
rate in Table 3. We used four different imputation methods with CC method and obtained regression
coefficients using a Bayesian adaptive B-spline method. For baseline hazard, a Weibull model was
incorporated in the parametric model part. For the frailty density model, lognormal distribution was
assumed. For model selection criterion, we used a modification version of the Deviance Information
Criterion (Spiegelhalter et al., 2002). DIC is computed as

DIC = D̄ +
V
2
, (5.1)
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Figure 2: Regression coefficient estimates using five different missing data methods when M = 100 and mi = 5
under various missing rates.



Comparison of missing data methods 169

(a) M = 10 and mi = 50 (b) M = 100 and mi = 5

Figure 3: Regression coefficient estimates of the frailty under five different missing data methods with various
missing rates.

Table 3: Covariates and basic description and missing rates for the CD data

Name Description Missing rate

Age at diagnosis
A1 less than 16 years

0.3%A2 between 17 and 40 years
A3 older than 40 years
L1 ileal

Tumor location L2 colonic 8.1%L3 ileocolonic
L4 isolated upper disease

Tumor behavior
B1 non-stricturing, non-penetrating

8.1%B2 stricturing
B3 penetrating

Table 4: Deviance Information Criterion estimates using five different missing data methods

CC SI MICE MICE-PMM AregImp
1841.091 1637.391 1757.315 1716.785 1809.242

where D̄ and V are the sample mean and the variance of deviance calculated at each MCMC step,
respectively. We run the sampling chain for 1500 iterations, discarding the first 500 iterates as burn-in
and thinning the chain to every 10th sample.

In Table 4, DIC showed that SI (DIC = 1637.391) or MICE-PMM (DIC = 1716.785) method was
a good choice for missing value imputation. These results are consistent with the simulation study.
The real data coincides with the simulation case where M = 10, mi = 50 at missing rates of 5% and
10%. In this case, for categorical variable Z2, CC had a larger bias than the other four methods while
SI had the smallest bias.

Table 5 shows the posterior mean and 95% posterior intervals for covariate effects and the standard
deviation of the frailty. In all five imputation methods, signs and magnitudes of regression coefficients
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Table 5: Posterior mean and 95% credible intervals of regression coefficients and frailty variance for the CD
data using five missing data methods

Covariates CC MICE-PMM
Posterior mean 2.5% quantile 97.5% quantile Posterior mean 2.5% quantile 97.5% quantile

Age linear −0.1366 −0.5951 0.1619 −0.1210 −0.5047 0.2270
Age quad −0.0455 −0.3359 0.2131 −0.0881 −0.3957 0.2028

Location L2 0.2474 −0.1645 0.7326 0.2067 −0.1260 0.6014
Location L3 0.0931 −0.2501 0.4536 0.0425 −0.2486 0.3089
Location L4 0.0833 −0.2730 0.5939 0.1457 −0.2504 0.6150
Behavior B2 −0.0897 −0.4712 0.2559 −0.0960 −0.4437 0.1797
Behavior B3 −0.0765 −0.4155 0.3961 −0.0954 −0.4696 0.2143

Variance of frailties 0.5236 0.1492 1.2387 0.5227 0.1609 1.2889

Covariates SI AregImp
Posterior mean 2.5% quantile 97.5% quantile Posterior mean 2.5% quantile 97.5% quantile

Age linear −0.1595 −0.7160 0.2415 −0.1070 −0.4810 0.2161
Age quad −0.1035 −0.5017 0.2009 −0.0486 −0.3738 0.2752

Location L2 0.3221 −0.0013 0.6857 0.1692 −0.0893 0.5136
Location L3 0.0273 −0.2712 0.2865 −0.0082 −0.3004 0.2436
Location L4 0.0588 −0.5435 0.6616 0.0631 −0.2927 0.5398
Behavior B2 −0.1824 −0.5168 0.0690 −0.0940 −0.3935 0.1990
Behavior B3 −0.0122 −0.3403 0.2794 −00258 −0.3368 0.2837

Variance of frailties 0.5344 0.2225 0.9447 0.5278 0.1465 1.2583

Covariates MICE
Posterior mean 2.5% quantile 97.5% quantile

Age linear −0.1043 −0.5104 0.2433
Age quad −0.0567 −0.3539 0.2395

Location L2 0.1618 −0.1344 0.5570
Location L3 0.0093 −0.2665 0.2621
Location L4 0.0648 −0.3029 0.4223
Behavior B2 −0.0512 −0.3919 0.2307
Behavior B3 −0.0314 −0.3252 0.2020

Variance of frailties 0.5177 0.1727 1.0509

showed similar results.
No significant covariate affected the time to reoperation; however, in the SI method, Behavior B2

was ‘nearly significant’ since its 95% confidence intervals of regression coefficient was (−0.5168,
0.0690) and the upper bound was near a negative value. The effect was not statistically significant at
p < 0.05; however, we could assume that patients who had stricturing behavior (B2) tended to have
longer time to have a re-operation from CD recurrence compared to patients who had non-stricturing
or non-penetrating behavior.

6. Discussion

This paper compared five different missing data methods (CC, SI, and three different multiple im-
putation methods: MI-MICE, MI-MICE-PMM, and MI-AregImpute) in the presence of missing co-
variates in clustered data. We estimated the regression coefficient through modeling the unknown
baseline hazard and frailty density using B-spline in a Bayesian paradigm with incorporating prior
distribution. Modeling is flexible and prior information is available when using a Bayesian approach.
In the simulation study, performances of the five missing data methods were different depending on
the missing rate and the type of covariate. At a missing rate of 5%, the CC analysis showed good
performance to estimate the coefficient for a variable that did not have a missing value. However, CC
had the worst performance for a covariate with missing values, even when the missing rate was very
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small. Single imputation methods showed a better performance than MI methods at a missing rate of
5% for covariates with missing values. This result shows that MI method does not always give better
results than SI methods. For categorical variables, aregImpute method produced less biased regression
coefficient estimates when 15% or more cases had missing data. However, MICE and MICE-PMM
showed good results for continuous variable at a missing rate of 15% (or higher). The performance in
handling missing values vary depending on the underlying distribution of covariates and the missing
data mechanism. Our simulation results were based on a restricted data setting. Therefore, caution is
needed when generalizing the study results. Further study is needed to obtain consistent results under
various settings when missing covariates have stratification and time-dependence or skewness. Fur-
ther simulation is also needed when different distributions of frailty and baseline hazard are assumed
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