• 제목/요약/키워드: missile

검색결과 1,101건 처리시간 0.037초

함정운용 유도탄 전기체(全機體)의 진동충격 환경시험 (A Vibration and Shock Environmental Tests for the Missile Installed in the Naval Vessels)

  • 권병현;권종화;안성우;이호준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.809-812
    • /
    • 2005
  • This paper explains environmental tests of vessel-launched missiles, verifying if a fully assembled missile performs properly from disturbance on delivery by vehicles or naval vessels. We also have operated vibration tests by ground and naval transportation as well as shock tests by naval transportation before firing. The environmental tests have adopted Military Standard Specification and confirmed missile's reliability by performance tests, followed by missile's development. However, this significant testing which have meaning was dong by the missile's body and not with parts.

  • PDF

유도무기의 신뢰성 향상을 위한 비행환경 모사시험 방안 연구 (Flight Environment Simulation Test for Reliability Improvement of Precise Guided Missile)

  • 최승혁
    • 한국정밀공학회지
    • /
    • 제33권10호
    • /
    • pp.781-787
    • /
    • 2016
  • We introduce FEST (Flight Environment Simulation Test) procedures for precise guided missiles to reliably improve systems. Flight vibration specification was established based on power spectral density curves calculated from flight test data of a high speed precise guided missile. A FEST pre-profile was developed according to flight vibration specification and delivered to a precise guided missile assembly. Vibration responses were measured by installing accelerometers on electronic components vulnerable to dynamic forces. The FEST profile was adjusted by comparing the vibration responses and the flight vibration specification. Subsequently, the FEST profile was repeatedly modified through trial and error, because the responses were similar to the flight environment. The modified FEST profile enabled performance testing of assembled precise guided missiles under simulated flight conditions on the ground, where unexpected errors could be corrected before the flight tests, leading to cost and risk reduction in the development of the precise guided missile system.

패트리어트 (patriot) 미사일의 최적 배치 (Optimal deployment strategy of patriot missile)

  • 김영휘;김성인;오원민
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1994년도 춘계공동학술대회논문집; 창원대학교; 08월 09일 Apr. 1994
    • /
    • pp.29-37
    • /
    • 1994
  • It is reported that north Korea has already developed 1,500 to 2,000-km-range Scud missile. As a defensive strategy against Scud attack on military and civilian facilities the military authorities are considering deployment of Patriot missile. This paper deals with its optimal deployment strategy. In this problem a Patriot missile which has multiple-facility responsibility may be able to protect each of its assigned facilities only with a certain probability, not absolute protection, and it may not be adequate to have only a single missile protect a facility, either because of its operational reliability or because of its limited availability at any given point in time. We formulate this problem into the probabilistic partial set covering model developed by Sherali and Kim. The applicability, verification and validation of the model are tested via an abbreviated case study.

MDO 프레임워크를 이용한 유도무기 최적 형상 설계 (Missile Configuration Design and Optimization Using MDO Framework)

  • 이승진;김우현;이재우;이창혁;김상호;황성환
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.343-346
    • /
    • 2006
  • 본 연구에서는 유도무기 MDO 프레임워크 개발을 위한 최적화 과정을 구성하였다. MDO 프레임워크에 통합될 각 해석 자원과 통합설계를 위한 해석 자원간의 데이터 흐름을 분석하였다. 분석된 자료를 토대로, 개발될 MDO 프레임워크의 최적설계 시나리오를 작성하였다. 그리고 작성된 시나리오의 검증을 위해 유도무기에 대한 최적설계 문제를 구성하여 이를 수행하였다.

  • PDF

Numerical simulation of reinforced concrete slabs under missile impact

  • Thai, Duc-Kien;Kim, Seung-Eock
    • Structural Engineering and Mechanics
    • /
    • 제53권3호
    • /
    • pp.455-479
    • /
    • 2015
  • This paper presents a numerical analysis of reinforced concrete slabs under missile impact loading. The specimen used for the numerical simulation was tested by the Technical Research Center of Finland. LS-DYNA, commercial available software, is used to analyze the model. The structural components of the reinforced concrete slab, missile, and their contacts are fully modeled. Included in the analysis is material nonlinearity considering damage and failure. The results of analysis are then verified with other research results. Parametric studies with different longitudinal rebar ratios, shear bar ratios, and concrete strengths are conducted to investigate their influences on the punching behavior of slabs under the impact of a missile. Finally, efficient designs are recommended.

Arrow 미사일 방어체계 개발 현황 (Development Status of Arrow Missile Defense System)

  • 박태용
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.283-284
    • /
    • 2018
  • 이스라엘의 미사일 방어체계인 Arrow 체계는 미국과 이스라엘 간 전략적 협력관계를 통해 개발되었다. 미국 레이건 행정부의 전략방위구상(Strategic Defense Initiative, SDI) 연구에 이스라엘이 1986년에 협력함으로써 전술탄도미사일 방어체계 개발이 시작되었고, 두 차례의 획기적인 성능개량을 통해 현재 Arrow 3까지 개발되어있다. 주변국으로부터 탄도미사일 위협을 직접적으로 받고 있고, 전장의 종심이 짧은 이스라엘의 지정학적 환경에 맞도록 개발되고 지속적으로 업그레이드되고 있는 Arrow 미사일 방어체계의 개발 사례는 한반도 환경에 적합한 탄도미사일 방어체계를 구축함에 있어 모범적 사례가 될 수 있다.

  • PDF

외란 적응 제어를 적용한 미사일 비선형 제어 (Nonlinear model inversion missile control with disturbance accommodating control)

  • 조현식;김인중;김진호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1500-1503
    • /
    • 1996
  • This paper combines the disturbance accommodating control(DAC) and nonlinear model inversion control for a skid-to-turn(STT) missile. The missile autopilot may be designed to be robust with respect to a variety of uncertainties. We proposes the two step control design method. Nonlinear model inversion control is used as the main design method. Due to the model uncertainties and external disturbances, the exact nonlinear model inversion can not be achieved. DAC is designed to detect, to identify, and to compensate these uncertainties. DAC's disturbance observer is linear. Thus it is easy to implement. It does not cause the convergence problem due to coexistence between the modeling uncertainties and external disturbances. 6 DOF simulation results show that the proposed method may improve the missile tracking performance.

  • PDF

최적 충돌각 제어법칙에 관한 연구 (A Study of Optimal Impact Angle Control Laws)

  • 송택렬;신상진
    • 한국군사과학기술학회지
    • /
    • 제1권1호
    • /
    • pp.211-218
    • /
    • 1998
  • As a part of trajectory modulation to increase system survivability and terminal effectiveness, impact angle control is required in the terminal phase of tactical missile systems. The missile systems are not allowed to have high altitude to reduce probability of detection by sensors of missile defense systems. In this paper, an analytic form of a time-optimal control law is suggested in the case of constrained missile maneuverability and impact angle under the assumption of a zero-lag autopilot. The control law is obtained by establishing optimal missile-target engagement geometry in the vertical plane. Extension of the law for missiles with autopilot response lags requiring a numerical solution is studied by introducing an iterative algorithm for optimal switching time determination of which the initial switching instants are obtained from the analytic solution. Also suggested is a closed-form impact angle control law derived by an energy-optimal approach. The performances of the proposed guidance laws are evaluated by a series of computer runs.

  • PDF

Mixed Control with Aerodynamic Fin and Side Thruster Applied to Air Defense Missile

  • Chanho Song;Kim, Yoon-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.148.4-148
    • /
    • 2001
  • This paper shows an autopilot design example with simulation results for a medium range surface-to-air missile used to intercept fast maneuver targets. The missile is assumed to use both aerodynamic fins and side thrusters to achieve fast time response. The steady-state maneuver capability of the missile is assumed to be enough at high altitude to engage usual maneuvering targets. Side thruster is used to get an extremely rapid acceleration response at high altitude where the missile´s aerodynamic control effectiveness is weak. The strategy of control design is firstly to employ side thrusters to achieve a rapid response and then to hand-over the control to the aerodynamic fins to maintain the desired acceleration command in the steady state ...

  • PDF

신경회로망 기반 미사일 적응제어기의 모델 불확실 상황에 대한 시뮬레이션 연구 (Simulation Analysis of the Neural Network Based Missile Adaptive Control with Respect to the Model Uncertainty)

  • 성재민;김병수
    • 제어로봇시스템학회논문지
    • /
    • 제16권4호
    • /
    • pp.329-334
    • /
    • 2010
  • This paper presents the design of a neural network based adaptive control for missile. Acceleration of missile by tail fin control cannot be controllable by DMI (Dynamic Model Inversion) directly because it is non-minimum phase system. To avoid the non-minimum phase system, dynamic model inversion is applied with output-redefinition method. In order to evaluate performance of the suggested controllers we selected the three cases such as control surface fail, control surface loss and wing loss for model uncertainty. The corresponding aerodynamic databases to the failure cases were calculated by using the Missile DATACOM. Using a high fidelity 6DOF simulation program of the missile the performance was evaluates.