• Title/Summary/Keyword: missense mutation

Search Result 137, Processing Time 0.023 seconds

Detection of Rifampin Resistance Mutation and Its Altered Nucleotide Sequences in Mycobacterium leprae Isolated from Korean Patients with Leprosy

  • Kim, Soon-Ok;Kim, Min-Joo;Tae, Chae-Gue;Suh, Joo-Won
    • Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.236-240
    • /
    • 1996
  • Rifampin is the most powerful drug for treating leprosy and tuberculosis today. It inhibits initiation and elongation of RNA transcription by binding to $\beta$-subunit of RNA polymerase, leading to kill mycobacteria. We isolated one variant strain of Mycobacterium leprae from 24 Korean leprosy patients who are less susceptible to rifampin or have suffered from relapse by polymerase chain reaction and single strand conformation polymorphism (PCR-SSCP) of the rpoB gene. Direct sequencing of the rpoB region of M. leprae variant revealed missense mutations which altered the amino acids sequenceof RpoB to Ser-464, Arg-465, Arg-467 and Ala-468. This is the first finding on rpoB gene mutation of M. leprae from Korean patients ; moreover the mutant type was found to be different from the previously reported cases in other countries.

  • PDF

Detection of Novel Genetic Variations of the MG1R * 3 Allele in Pig(Sus scrofa) (돼지 Melanocortin Receptor 1(MC1R) 대립유전자 3의 신규 유전변이 탐색)

  • Cho, I.C.;Jeong, Y.H.;Jung, J.K.;Seong, P.N.;Oh, W.Y.;Ko, M.S.;Kim, B.W.;Lee, J.G.;Jeon, J.T.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • This study was conducted to investigate novel genetic variations of MCIR^*3 allele. In general, white spotting or white belt on a black backgroud in pigs is determined by the E$^p$ allele at the MCIR/Extention locus. E$^p$ shares a frameshift mutation with the E$^{D2}$ allele for dominant black color. An oligonucleotide primer set was designed to amplify complete coding sequence of the porcine MCIR gene. The MCIR coding sequences obtained from five breeds those were Landrace(white). Yorkshire(white), Hampshire(belt), Berkshire(spot) and Jeju native black pigs(black), were used for this study. A multiple sequence alignment of the MCIR coding region using Clustal W was performed. The total length of the MCIR coding sequence ranged from 963 to 966 base pairs(bp) among the selected breeds. The sequence analysis of the complete coding region of MCIR was revealed that Hampshire and Jeju native black pig have 3 cytosines deletion and Birkshire has 2 cytosines deletion at codon 23(nt68) in Extention loci. Besides the finding, there were three different missense mutations and a frameshift mutation in the MCIR coding region.

Functional Abnormalities of HERG Mutations in Long QT Syndrome 2 (LQT2)

  • Hiraoka, Masayasu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.5
    • /
    • pp.367-371
    • /
    • 2001
  • The chromosome 7-linked long QT syndrome (LQT2) is caused by mutations in the human ether-a- go-go-related gene (HERG) that encodes the rapidly activating delayed rectifier $K^+$ current, $I_{Kr},$ in cardiac myocytes. Different types of mutations have been identified in various locations of HERG channel. One of the mechanisms for the loss of normal channel function is due to membrane trafficking of channel protein. The decreased channel function in some deletion mutants appears to be due to loss of coupling with wild type HERG to form the functional channel as the tetramer. Most of missense mutants with few exceptions could interact with wild type HERG to form functional tetramer and caused dominant negative suppression with co-injection with wild type HERG showing variable effects on current amplitude, voltage dependence, and kinetics of activation and inactivation. Two missense mutants at pore regions of HERG found in Japanese LQT2 (A614V and V630L) showed accentuated inward rectification due to a negative shift in steady-state inactivation and fast inactivation. One mutation in S4 region (R534C) produced a negative shift in current activation, indicating the S4 serving as the voltage sensor and accelerated deactivation. The C-terminus mutation, S818L, could not express the current by mutant alone and did not show dominant negative suppression with co-injection of equal amount of wild type cRNA. Co-injection of excess amount of mutant with wild type produced dominant negative suppression with a shift in voltage dependent activation. Therefore, multiple mechanisms are involved in different mutations and functional abnormality in LQT2. Further characterization with the interactions between various mutants in HERG and the regulatory subunits of the channels (MiRP1 and minK) is to be clarified.

  • PDF

A Case of Glanzmann's Thrombasthenia with β3 Subunit Missense Mutation

  • Hwang, Ja-Young;Kim, Min-Ji;Lee, Weon-Sun;Seo, Se-Yeong;Hahn, Seong-Hoon;Kim, So-Young;Kim, Hyun-Hee;Lee, Won-Bae
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.5 no.1
    • /
    • pp.126-132
    • /
    • 2005
  • Glanzmann's thrombasthenia is an autosomal recessively inherited hemorrhagic disorder that results from quantitative and qualitative abnormalities in platelet membrane glycoprotein IIb-IIIa, also known as ${\alpha}_{IIb}{\beta}_3$ integrin which is an adhesion receptor for fibrinogen and von Willebrand factor. We describe here a 4-year-old girl who had Glanzmann's thrombasthenia with the ${\beta}_3$ subunit missense mutation.

  • PDF

Smith-Kingsmore syndrome: The first report of a Korean patient with the MTOR germline mutation c.5395G>A p.(Glu1799Lys)

  • Lee, Dohwan;Jang, Ja-Hyun;Lee, Cha Gon
    • Journal of Genetic Medicine
    • /
    • v.16 no.1
    • /
    • pp.27-30
    • /
    • 2019
  • Smith-Kingsmore syndrome (SKS; OMIM 616638), also known as macrocephaly-intellectual disability-neurodevelopmental disorder-small thorax syndrome (MINDS; ORPHA 457485), is a rare autosomal dominant disorder, the prevalence of which is not known. It is caused by a heterozygous germline mutation in MTOR (OMIM 601231). Ten different MTOR germline mutations in 27 individuals have been reported in the medical literature to date. These were all gain-of-function missense variants, and about half of the 27 individuals had c.5395G>A p.(Glu1799Lys) in MTOR. Here, I report for the first time a Korean patient with the heterozygous germline mutation c.5395G>A p.(Glu1799Lys) in MTOR. It was found to be a de novo mutation, which was identified by whole-exome sequencing and confirmed by Sanger sequencing. The patient showed typical clinical features of SKS, including macrocephaly/megalencephaly; moderate intellectual disability; seizures; behavioral problems; and facial dysmorphic features of curly hair, frontal bossing, midface hypoplasia, and hypertelorism.

Mutational Analysis of Prohibitin - A Highly Conserved Gene in Indian Female Breast Cancer Cases

  • Najm, Mohammad Zeeshan;Akhtar, Md. Salman;Ahmad, Istaq;Sadaf, Sadaf;Mallick, Mohd Nasar;Kausar, Mohd Adnan;Chattopadhyay, Shilpi;Ahad, Amjid;Zaidi, Shuaib;Husain, Syed Akhtar;Siddiqui, Waseem Ahmad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.5113-5117
    • /
    • 2012
  • Prohibitin (PHB) is a chaperone protein which is highly conserved evolutionarily. It shows significant homology with the Drosophila cc gene which is considered important for development and differentiation of Drosophila melanogaster. Investigations have revealed an involvement of PHB in cellular proliferation and development, apoptosis, signal transduction, mitochondrial function and regulation of the estrogen and androgen receptors. Therefore, we conducted the present study to analyze mutations in the highly conserved region in Indian female breast cancer patients. Conventional PCR-SSCP and Automated DNA sequencing were performed with a total of 105 breast cancer samples along with adjacent normal tissue. Of the total, 14.2% (15/105) demonstrated a mutation status of prohibitin observed in our study population. We identified a novel missense mutation (Thr>Ser), a novel deletion of T nucleotide in an intron adjacent to intron-exon boundary and a previously determined missense mutation (Val>Ala). A statistically significant correlation was obtained which suggested that prohibitin may be associated with tumor development and/or progression of at least some proportion of breast cancers.

Partial HPRT Deficiency Due to a Missense Mutation in the HPRT Gene (HPRT 유전자 돌연변이에 의한 HPRT 부분결핍증 1례)

  • Yang Ju-Hee;Park Min-Hyuk;Kim Deok-Soo;Shim Jae-Won;Shim Jung-Yeon;Jung Hye-Lim;Yoo Han-Wook;Park Moon-Soo
    • Childhood Kidney Diseases
    • /
    • v.7 no.1
    • /
    • pp.86-90
    • /
    • 2003
  • An 8-month-old male infant presented with persistent, gross, orange-colored crystals in his urine. His physical and neurological development was normal. Laboratory study showed hyperuricemia, hyperuricosuria and urate crystaluria. He was determined to have partial hypoxanthine-guanine phosphoribosyl transferase(HPRT) deficiency. The molecular genetic analysis revealed a missense mutation in the patient's HPRT gene. By sequencing the patient's cDNA, we identified an A-to-G transition at nucleotide 239, resulting in the replacement of Aspartate with Glycine at amino acid 80 in the HPRT. To our knowledge, this mutation has not previously been reported. Our patient is now being placed on allopurinol therapy, and has had no problem since. Partial HPRT deficiency has been known to cause recurrent acute renal failure without the phenotypic features of Lesch-Nyhan syndrome. Therefore, we think that early diagnosis and treatment are very crucial in preventing acute renal failure.

  • PDF

Prevelance of Common YMDD Motif Mutations in Long Term Treated Chronic HBV Infections in a Turkish Population

  • Alagozlu, Hakan;Ozdemir, Ozturk;Koksal, Binnur;Yilmaz, Abdulkerim;Coskun, Mahmut
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5489-5494
    • /
    • 2013
  • In the current study we aimed to show the common YMDD motif mutations in viral polymerase gene in chronic hepatitis B patients during lamivudine and adefovir therapy. Forty-one serum samples obtained from chronic hepatitis B patients (24 male, 17 female; age range: 34-68 years) were included in the study. HBV-DNA was extracted from the peripheral blood of the patients using an extraction kit (Invisorb, Instant Spin DNA/RNA Virus Mini Kit, Germany). A line probe assay and direct sequencing analyses (INNO-LIPA HBV DR v2; INNOGENETICS N.V, Ghent, Belgium) were applied to determine target mutations of the viral polymerase gene in positive HBV-DNA samples. A total of 41 mutations located in 21 different codons were detected in the current results. In 17 (41.5%) patients various point mutations were detected leading to lamivudin, adefovir and/or combined drug resistance. Wild polymerase gene profiles were detected in 24 (58.5%) HBV positive patients of the current cohort. Eight of the 17 samples (19.5%) having rtM204V/I/A missense transition and/or transversion point mutations and resistance to lamivudin. Six of the the mutated samples (14.6%) having rtL180M missense transversion mutation and resistance to combined adefovir and lamivudin. Three of the mutated samples (7.5%) having rtG215H by the double base substituation and resistance to adefovir. Three of the mutated samples (7.5%) having codon rtL181W due to the missense transversion point mutations and showed resistance to combined adefovir and lamivudin. Unreported novel point mutations were detected in the different codons of polymerase gene region in the current HBV positive cohort fromTurkish population. The current results provide evidence that rtL180M and rtM204V/I/A mutations of HBV-DNA may be associated with a poor antiviral response and HBV chronicity during conventional therapy in Turkish patients.

A novel mutation in GJC2 associated with hypomyelinating leukodystrophy type 2 disorder

  • Komachali, Sajad Rafiee;Sheikholeslami, Mozhgan;Salehi, Mansoor
    • Genomics & Informatics
    • /
    • v.20 no.2
    • /
    • pp.24.1-24.8
    • /
    • 2022
  • Hypomyelinating leukodystrophy type 2 (HLD2), is an inherited genetic disease of the central nervous system caused by recessive mutations in the gap junction protein gamma 2 (GJC2/GJA12). HLD2 is characterized by nystagmus, developmental delay, motor impairments, ataxia, severe speech problem, and hypomyelination in the brain. The GJC2 sequence encodes connexin 47 protein (Cx47). Connexins are a group of membrane proteins that oligomerize to construct gap junctions protein. In the present study, a novel missense mutation gene c.760G>A (p.Val254Met) was identified in a patient with HLD2 by performing whole exome sequencing. Following the discovery of the new mutation in the proband, we used Sanger sequencing to analyze his affected sibling and parents. Sanger sequencing verified homozygosity of the mutation in the proband and his affected sibling. The autosomal recessive inheritance pattern was confirmed since Sanger sequencing revealed both healthy parents were heterozygous for the mutation. PolyPhen2, SIFT, PROVEAN, and CADD were used to evaluate the function prediction scores of detected mutations. Cx47 is essential for oligodendrocyte function, including adequate myelination and myelin maintenance in humans. Novel mutation p.Val254Met is located in the second extracellular domain of Cx47, both extracellular loops are highly conserved and probably induce intramolecular disulfide interactions. This novel mutation in the Cx47 gene causes oligodendrocyte dysfunction and HLD2 disorder.

Genetic Risk Factors of Hemophilia A (혈우병 A의 발병에 관여하는 유전적 요인)

  • Shim, Ye-Jee;Lee, Kun-Soo
    • Journal of Genetic Medicine
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Hemophilia A is a sex-linked recessive coagulation disorder associated with diverse mutations of the factor VIII gene and a variety of phenotypes. The type of mutation involved dictates the activity of factor VIII, and in turn the severity of bleeding episodes and development of alloantibodies against factor VIII (inhibitors). Missense mutations are the most common genetic risk factors for hemophilia A, especially mild to moderate cases, but carry the lowest risk for inhibitor development. On the other hand, intron 22 inversion is the most common mutation associated with severe hemophilia A and is associated with high risk of inhibitor formation. Large deletions and nonsense mutations are also associated with high risk of inhibitor development. Additional mutations associated with hemophilia A include frameshift and splice site mutations. It is therefore valuable to assess the mutational backgrounds of hemophilia A patients in order to to interpret their symptoms and manage their health problems.