• 제목/요약/키워드: miscible blend

검색결과 38건 처리시간 0.019초

Miscibility of TPU(PCL diol)/PCL Blend and its Effect on PCL Crystallinity

  • Ajili Shadi Hassan;Ebrahimi Nadereh Golshan
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.371-372
    • /
    • 2006
  • Poly(${\varepsilon}-caprolactone$) (PCL) is a highly crystalline polymer that is miscible with several amorphous polymers including chlorinated polyether, poly(vinylchloride), poly(hydroxyether) and Bisphenol A polycarbonate. The crystallization behavior of miscible blend of amorphous/crystalline polymers has widely been studied. Generally a depression of the crystallization ability has been found with addition of amorphous component because of the reduction of chain mobility, the change of free energy of nucleation as a result of a specific interaction, and so on [1]. In this work, for the first time, the blend of PCL and copolymer of polyurethane containing polycaprolactone as a soft segment is considered. The structural similarity of TPU soft segment with PCL affects on formation of the miscible component and crystallization behavior of PCL in the blend. This has been studied using differential scanning calorimetry (DSC) and Wide-angle X-ray Scattering (WAXS).

  • PDF

Spinodal Phase Separation and Isothermal Crystallization Behavior in Blends of VDF/TrFE(75/25) Copolymer and Poly(1,4-butylene adipate) (I) -Spinodal Phase Separation Behavior-

  • Kim, Kap Jin;Kyu, Thein
    • Fibers and Polymers
    • /
    • 제4권4호
    • /
    • pp.188-194
    • /
    • 2003
  • Phase behavior and spinodal phase separation kinetics in binary blends of a random copolymer of vinylidene fluoride and trifluoroethylene (75/25) [P(VDF/TrFE)] and poly(l,4-butylene adipate) (PBA) have been investigated by means of optical microscopic observation and time-resolved light scattering. The blends exhibited a typical lower critical solution temperature (LCST)∼${34}^{\circ}C$ above the melting temperature of the P(VDF/TrFE) crystals over the entire blend composition range. P(VDF/TrFE) and PBA were totally miscible in the temperature gap between the melting point of P(VDF/TrFE) and the LCST. Temperature jump experiments of the 3/7 P(VDF/TrFE)/PBA blend were carried out on a light-scattering apparatus from a single-phase melt state (${180}^{\circ}C$) to a two-phase region (205∼${215}^{\circ}C$). Since the late stage of spinodal decomposition (SD) is prevalent in the 3/7 blend, SD was analyzed using a power law scheme. Self-similarity was preserved well in the late stage of SD in the 3/7 blend.

Component dynamics in miscible polymer blends: A review of recent findings

  • Watanabe, Hiroshi;Urakawa, Osamu
    • Korea-Australia Rheology Journal
    • /
    • 제21권4호
    • /
    • pp.235-244
    • /
    • 2009
  • Miscible polymer blends still have heterogeneity in their component chain concentration in the segmental length scale because of the chain connectivity (that results in the self-concentration of the segments of respective chains) as well as the dynamic fluctuation over various length scales. As a result, the blend components feel different dynamic environments to exhibit different temperature dependence in their segmental relaxation rates. This type of dynamic heterogeneity often results in a broad glass transition (sometimes seen as two separate transitions), a broad distribution of the local (segmental) relaxation modes, and the thermo-rheological complexity of this distribution. Furthermore, the dynamic heterogeneity also affects the global dynamics in the miscible blends if the component chains therein have a large dynamic asymmetry. Thus, the superficially simple miscible blends exhibit interesting dynamic behavior. This article gives a brief summary of the features of the segmental and global dynamics in those blends.

Miscibility in Binary Blends of Poly(vinyl phenol) and Poly(n-alkylene 2,6-naphthalates)

  • Lee, Joon-Youl;Han, Ji-Young
    • Macromolecular Research
    • /
    • 제12권1호
    • /
    • pp.94-99
    • /
    • 2004
  • We have performed Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) studies on blends of poly(vinyl phenol) (PVPh) with poly(n-alkylene 2,6-naphthalates) containing alkylene units of different lengths. The results indicate that each poly(ethylene 2,6-naphthalate) (PEN) and poly(trimethylene 2,6-naphthalate) (PTN) blend with PVPh is immiscible or partially miscible, but blends of poly(butylene 2,6-naphthalate) (PBN) with PVPh are miscible over the whole range of compositions in the amorphous state. FTIR spectroscopic analysis confirmed that significant degree of intermolecular hydrogen bonding occurs between the PBN ester carbonyl groups and the PVPh hydroxyl groups. The large difference in the degree of mixing in these blend systems is described in terms of the effect that chain mobility has on the accessibility of the ester carbonyl functional groups toward the hydroxyl groups of PVPh, which in turn impacts the miscibility of these blends.

Control of Wavelength Dispersion of Birefringence by Miscible Polymer Blends

  • Ougizawa, Toshiaki;Kuboyamaima, Keiichi
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.365-365
    • /
    • 2006
  • The wavelength dispersion of birefringence (or retardation) is very important property for optical use of polymer films. Birefringence free film and retardation film have been widely used for applications such as liquid crystal display (LCD). In this study, miscible polymer blends which consist of polymers of positive and negative birefringence were found. By operating composition and orientation of molecules in the transparent blend films, the behavior of wavelength dispersion of birefringence (retardation) was controlled. The applicability to wideband birefringence free film and quarter wave (retardation) film was discussed.

  • PDF

Miscible Blend and Semi-IPN Gel of Poly(hydroxyethyl aspartamide) with Poly(N-vinyl pyrrolidone) (폴리아스팔트아미드와 폴리(비닐 피롤리돈)의 상용블렌드 및 Semi-IPN 젤 제조)

  • Meng, Fan;Jeon, Young-Sil;Chung, Dong-June;Kim, Ji-Heung
    • Polymer(Korea)
    • /
    • 제36권5호
    • /
    • pp.617-621
    • /
    • 2012
  • PHEAs [${\alpha}$,${\beta}$-poly(2-hydroxyethyl-DL-aspartamides)], a class of poly(amino acid), have been widely studied as biodegradable and biocompatible polymers for potential biomedical and pharmaceutical applications. In this study, we investigated a homogeneous blend of PHEA with poly(N-vinyl pyrrolidone) (PNVP) and its semi-IPN (semi-interpenetrating polymer network) gels. Blend films were prepared by a solution casting method. The resulting blends were totally transparent over the whole composition ranges and the single $T_g$, changing monotonously with composition, was observed by DSC to confirm the miscibility between these two polymers. FTIR was used to discuss the possible hydrogen-bonding interaction between polymers. In addition, semi-IPN type gels were prepared by chemical crosslinking of PHEA/PNVP blend solution using hexamethylene diisocyanate (HMDI) as a crosslinking reagent. The prepared gel was characterized by their swelling property and morphology.

Topological Analysis on the Modulus and Network Structure of Miscible Polymer Blends

  • 손정모;박형석
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권2호
    • /
    • pp.169-180
    • /
    • 1995
  • A topological theory is introduced to extend Tsenoglou's theory to polymer blends having temporary and permanent networks composed of multicomponent polymers which have miscible and flexible chains. The topological theory may estimate the values of free elastic energy, the molecular weight between entanglements, and the equilibrium shear moduli, and it may establish more correctly the topological relations among these physical quantities. Through such introduction of the topological theory, there can be topologically analyzed the mixing law for the rubbery plateau modulus of a fluid polymer blend, and there can be considered the topological relationship to the equilibrium modulus of an interpenetrating polymer network containing trapped entanglements and dangling segments. The theoretically predictive values are compared and show good agreement with the experimental data for several miscible polymer blends.

Effect of SMA on the Interfacial Shear Strength for Single Glass Fiber and PC/SAN Blends (SMA가 PC/SAN 블렌드와 유리섬유간의 계면결합력에 미치는 영향)

  • Lee, Ui-Hwan;Nam, Gi-Jun;Lee, Jae-Uk
    • Polymer(Korea)
    • /
    • 제25권4호
    • /
    • pp.512-520
    • /
    • 2001
  • One of the most important factors which affect the mechanical properties of fiber-reinforced composite materials is the interfacial shear strength (IFSS). The IFSS of glass fiber and polycarbonate (PC)/styrene-co-acrylonitrile (SAN) blend system has been measured by the single fiber fragmentation test (SFFT). SAN contents were varied up to 30 wt% and the IFSS increased with the SAN contents. Styrene-co-maleic anhydride (SMA) was used as the compatibilizer and the glass fiber was surface treated with organosilane coupling agents. Addition of small amount of SMA in PC/SAN blend improved the IFSS by chemical bonding between maleic anhydride and silanol. The optimum MA content was 0.4 wt% of total matrix contents. Also, IFSS was greatly affected by the miscibility condition of SAN/SMA blends, which depended on the copolymer composition of SAN and SMA. It was found out that, higher IFSS could be obtained when the SAN/SMA blend was in miscible pairs. In case of SAN/SMA miscible pairs, the IFSS depended on the MA content in total matrix, not on the MA content in SMA.

  • PDF

Preparation and Characterization of Nanofibrous Membranes of Poly(D,L-lactic acid)/Chitin Blend for Guided Tissue Regenerative Barrier

  • Kim, Hong-Sung;Kim, Jong-Tae;Jung, Young-Jin;Hwang, Dae-Youn;Son, Hong-Joo;Lee, Jae-Beom;Ryu, Su-Chak;Shin, Sang-Hun
    • Macromolecular Research
    • /
    • 제17권9호
    • /
    • pp.682-687
    • /
    • 2009
  • Nanofibrous membranes of poly(D,L-lactic acid)/chitin blend were prepared by electro spinning for a barrier of guided tissue regeneration. A miscible solution was obtained by the blending chitin-salt complex into 1-methyl-2-pyrrolidone solution of poly(D,L-lactic acid). The properties of the blend were examined for nanofibrous fabrication. The viscosity of the blend solution was increased significantly due to chain entanglement despite the low ratio of chitin to poly(D,L-lactic acid). An interaction between two polymeric compositions was confirmed by Fourier transform infrared spectroscopy. X-ray diffraction detected an appreciably ordered microstructure in the nanofiber of the blend. A membrane of thinner nanofibers was fabricated by electro spinning the chitin blend. The permeability of the membranes was examined using bioactive model compounds.

Miscibility and Thermal Behavior of Biodegradable Synthetic Aliphatic Polyester (Bionolle) and Poly(epichlorohydrin) Blends (생분해성 지방족 폴리에스테르(Bionolle)와 폴리에피클로로하이드린 블렌드의 상용성 및 열적 거동에 관한 연구)

  • 김진호;최형진;이동주;윤진산;진인주
    • Polymer(Korea)
    • /
    • 제24권3호
    • /
    • pp.358-365
    • /
    • 2000
  • Miscibility itnd thermal behavior of blends of synthetic biodegradable aliphatic polyester (Bionolle) with poly(epichlorohydrin) (PECH) were investigated by a differential scanning calorimetry (DSC), a dynamic mechanical thermal analyzer (DMTA) and a rotational rheometer. Observed both single glass transition temperatures from the DSC in agreement with the Fox equation and single T$_{g}$ changes as a function of composition from the DMTA indicate that these blend mixtures are miscible. In addition, the miscibility of this blend system was also observed from the single curve of the Cole-Cole Plot of log G′($\omega$) vs. log C"($\omega$) from the dynamic test using a rotational rheometer. This was further verified from the cryogenically fractured surface of BDP/PECH blends by scanning electron microscopy.

  • PDF