Preparation and Characterization of Nanofibrous Membranes of Poly(D,L-lactic acid)/Chitin Blend for Guided Tissue Regenerative Barrier

  • Kim, Hong-Sung (College of Natural Resources & Life Science, Pusan National University) ;
  • Kim, Jong-Tae (College of Natural Resources & Life Science, Pusan National University) ;
  • Jung, Young-Jin (College of Natural Resources & Life Science, Pusan National University) ;
  • Hwang, Dae-Youn (College of Natural Resources & Life Science, Pusan National University) ;
  • Son, Hong-Joo (College of Natural Resources & Life Science, Pusan National University) ;
  • Lee, Jae-Beom (College of Nano Science and Technology, Pusan National University) ;
  • Ryu, Su-Chak (College of Nano Science and Technology, Pusan National University) ;
  • Shin, Sang-Hun (School of Dentistry, Pusan National University)
  • Published : 2009.09.25

Abstract

Nanofibrous membranes of poly(D,L-lactic acid)/chitin blend were prepared by electro spinning for a barrier of guided tissue regeneration. A miscible solution was obtained by the blending chitin-salt complex into 1-methyl-2-pyrrolidone solution of poly(D,L-lactic acid). The properties of the blend were examined for nanofibrous fabrication. The viscosity of the blend solution was increased significantly due to chain entanglement despite the low ratio of chitin to poly(D,L-lactic acid). An interaction between two polymeric compositions was confirmed by Fourier transform infrared spectroscopy. X-ray diffraction detected an appreciably ordered microstructure in the nanofiber of the blend. A membrane of thinner nanofibers was fabricated by electro spinning the chitin blend. The permeability of the membranes was examined using bioactive model compounds.

Keywords

References

  1. A. Stavropoulos, A. Sculean, and T. Karring, Clin Oral Invest, 8, 226 (2004) https://doi.org/10.1007/s00784-004-0277-0
  2. K. Fujihara and M. Kotaki, Biomaterials, 26, 4139 (2005) https://doi.org/10.1016/j.biomaterials.2004.09.014
  3. H. Maeda, T. Kasuga, and L. L. Hench, Biomaterials, 27, 1216 (2006) https://doi.org/10.1016/j.biomaterials.2005.08.010
  4. R. S. Carvalho, D. Nelson, H. Kelderman, and R. Wise, Am. J. Orthod. Dentofacial Orthop., 123, 455 (2003) https://doi.org/10.1067/mod.2003.59
  5. A. Piattelli, A. Scarano, P. Russo, and S. Matarasso, Biomaterials, 17, 791 (1996) https://doi.org/10.1016/0142-9612(96)81416-5
  6. L. Dupoirieux, D. Pourquier, M. C. Picot, and M. Neves, Int. J. Oral Maxillofac. Surg., 30, 58 (2001) https://doi.org/10.1054/ijom.2000.0011
  7. Y. Taguchi, N. Amizuka, M. Nakadate, H. Ohnishi, N. Fujii, K. Oda, S. Nomura, and T. Maeda, Biomaterials, 26, 6158 (2005) https://doi.org/10.1016/j.biomaterials.2005.03.023
  8. S. Liao, W. Wang, M. Uo, S. Ohkawa, T. Akasaka, K. Tamura, F. Cui, and F. Watari, Biomaterials, 26, 7564 (2005) https://doi.org/10.1016/j.biomaterials.2005.05.050
  9. J. S. Lee, S. C. Kim, and H. K. Lee, Macromol. Res., 16, 631 (2008) https://doi.org/10.1007/BF03218572
  10. J. S. Lee, J. K. Kim, Y. H. Chang, and S. R. Park, Macromol. Res., 15, 205 (2007) https://doi.org/10.1007/BF03218776
  11. K. Kim, M. Yu, X. Zong, J. Chiu, D. Fang, Y. S. Seo, B. S. Hsiao, B. Chu, and M. Hadjiargyrou, Biomaterials, 24, 4977 (2003) https://doi.org/10.1016/S0142-9612(03)00407-1
  12. M. Christgau, N. Bader, G. Schmalz, K. A. Hiller, and A. Wenzel, Clin. Oral Invest., 1, 109 (1997) https://doi.org/10.1007/s007840050021
  13. M. N. V. R. Kumar, React. Funct. Polym., 46, 1 (2000) https://doi.org/10.1016/S1381-5148(00)00038-9
  14. M. Rinaudo, Prog. Polym. Sci., 31, 603 (2006) https://doi.org/10.1016/j.progpolymsci.2006.06.001
  15. T. Mori, M. Okumura, M. Matsuura, K. Ueno, S. Tokura, Y. Okamoto, S. Minami, and T. Fujinaga, Biomaterials, 18, 947 (1997) https://doi.org/10.1016/S0142-9612(97)00017-3
  16. H. Park, K. Y. Lee, S. J. Lee, K. E. Park, and W. H. Park, Macromol. Res., 15, 238 (2007) https://doi.org/10.1007/BF03218782
  17. X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, Polymer, 43, 4403 (2002) https://doi.org/10.1016/S0032-3861(02)00275-6
  18. K. Kim, Y. K. Luu, C. Chang, D. Fang, B. S. Hsiao, B. Chu, and M. Hadjiargyrou, J. Control. Release, 98, 47 (2004) https://doi.org/10.1016/j.jconrel.2004.04.009
  19. A. S. Badami, M. R. Kreke, M. S. Thompson, J. S. Riffle, and A. S. Goldstein, Biomaterials, 27, 596 (2006) https://doi.org/10.1016/j.biomaterials.2005.05.084
  20. J. Y. Kim, C. S. Ha, and N. J. Jo, Polym. Int., 51, 1123 (2002) https://doi.org/10.1002/pi.1000
  21. M. Peesan, P. Supaphol, and R. Rujiravanit, Carbohyd. Polym., 60, 343 (2005) https://doi.org/10.1016/j.carbpol.2005.01.008
  22. M. Peesan, R. Rujiravanit, and P. Supaphol, J. Biomater. Sci. Polym. Edn., 17, 547 (2006) https://doi.org/10.1163/156856206776986251
  23. L. Li, S. Ding, and C. Zhou, J. Appl. Polym. Sci., 91, 274 (2004)
  24. B. M. Min, Y. You, J. M. Kim, S. J. Lee, and W. H. Park, Carbohyd. Polym., 57, 285 (2004) https://doi.org/10.1016/j.carbpol.2004.05.007
  25. B. Duan, X. Yuan, Y. Zhu, Y. Zhang, X. Li, Y. Zhang, and K. Yao, Eur. Polym. J., 42, 2013 (2006) https://doi.org/10.1016/j.eurpolymj.2006.04.021
  26. H. S. Kim, J. T. Kim, S. C. Ryu, and J. H. Kim, Biomaterials Research, 11, 96 (2007)
  27. H. S. Kim, J. T. Kim, Y. J. Jung, S. C. Ryu, H. J. Son, and Y. G. Kim, Macromol. Res., 15, 65 (2007) https://doi.org/10.1007/BF03218754
  28. X. Liu, Y. Zou, W. Li, G. Cao, and W. Chen, Polym. Degrad. Stabil., 91, 3259 (2006) https://doi.org/10.1016/j.polymdegradstab.2006.07.004
  29. Y. Zhang, C. Xue, Y. Xue, R. Gao, and X. Zhang, Carbohyd. Res., 340, 1914 (2005) https://doi.org/10.1016/j.carres.2005.05.005