• Title/Summary/Keyword: mirror effect

Search Result 225, Processing Time 0.025 seconds

Fiber-Optic Current Transformer for the Over Current Protection Relay (과전류 보호계전기용 광섬유 전류센서)

  • Song, Min-Ho;Yang, Chang-Soon;Ahn, Seong-Joon;Park, Byoung-Seok;Lee, Byoung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.542-548
    • /
    • 2001
  • A robust, accurate, broad-band, alternating current sensor using fiber-optics is being developed as a part of optical over current protection relay system. The sensor uses the Faraday effect in optical fiber and polarimetric measurements tc sense electrical current. The current sensing coil consists of a length of twisted optical fiber and Faraday rotator mirror to suppress the linear birefringence effect. Due to its single-ended closed path structure, it can not only be easily installed to the target with great isolation from other fields in the vicinity, but the sensitivity can be increased by using multiple turns. This paper reports on the theoretical backgrounds of the sensor design and the preliminary experimental results.

  • PDF

Numerical Investigation of Purcell Enhancement of the Internal Quantum Efficiency of GaN-based Green LED Structures

  • Choi, Young-Hwan;Ryu, Guen-Hwan;Ryu, Han-Youl
    • Current Optics and Photonics
    • /
    • v.1 no.6
    • /
    • pp.626-630
    • /
    • 2017
  • GaN-based green light-emitting diode (LED) structures suffer from low internal quantum efficiency (IQE), known as the "green gap" problem. The IQE of LED structures is expected to be improved to some extent by exploiting the Purcell effect. In this study, the Purcell effect on the IQE of green LED structures is investigated numerically using a finite-difference time-domain simulation. The Purcell factor of flip-chip LED structures is found to be more than three times as high as that of epi-up LED structures, which is attributed to the high-reflectance mirror near the active region in the flip-chip LED structures. When the unmodified IQE is 20%, the relative enhancement of IQE can be greater than 50%, without utilizing the surface-plasmon coupling effect. Based on the simulation results, the "green gap" problem of GaN-based green LEDs is expected to be mitigated significantly by optimizing flip-chip LED structures to maximize the Purcell effect.

Effect of Substrata Surface Energy on Light Scattering of a Low Loss Mirror (기판의 표면에너지가 반사경의 산란에 미치는 영향)

  • Lee, Beom-Sik;Yu, Yeon-Serk;Lee, Jae-Cheul;Hur, Deog-Jae;Cho, Hyun-Ju
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.6
    • /
    • pp.452-460
    • /
    • 2007
  • Ultra-low loss ZERODUR and fused silica mirrors were manufactured and their light scattering characteristics were investigated. For this purpose, ZERODUR and fused silica substrates were super-polished by the bowl feed method. The surface roughness were 0.292 ${\AA}$ and 0.326 ${\AA}$ in rms for ZERODUR and fused silica, respectively. To obtain the high reflectivity, 22 thin film layers of $SiO_2$ and $Ta_2O_5$ were deposited by Ion Beam Sputtering. The measured light scattering of ZERODUR and fused silica mirror were 30.9 ppm and 4.6 ppm, respectively. This shows that the substrate surface roughness is not the only parameter which determines the light scattering of the mirror. In order to investigate the mechanism for additional light scattering of the ZERODUR mirror, the surface roughness of the mirror was measured by AFM and was found to be 2.3 times higher than that of the fused silica mirror. It is believed that there is some mismatch at the interface between the substrate and the first thin film layer which leads to the increased mirror surface roughness. To clarify this, the contact angle measurements were performed by SEO 300A, based on the Giriflaco-Good-Fowkes-Young method. The fused silica substrates with 0.46 ${\AA}$ in its physical surface roughness shows lower contact angle than that of the ZERODUR substrate with 0.31 ${\AA}$. This indicates that the thin film surface roughness is determined by not only its surface roughness but also the surface energy of the substrate, which depends on the chemical composition or crystalline orientation of the materials. The surface energy of each substrate was calculated from a contact angle measurement, and it shows that the higher the surface energy of the substrate, the better the surface roughness of the thin film.

Current Sensing Circuit of MOSFET Switch for Boost Converter (부스터 변환기를 위한 MOSFET 스위치 전류 감지 회로)

  • Min, Jun-Sik;No, Bo-Mi;Kim, Eui-Jin;Lee, Chan-Soo;Kim, Yeong-Seuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.667-670
    • /
    • 2010
  • In this paper, a high voltage current sensing circuit for boost converter is designed and verified by Cadence SPECTRE simulations. The current mirror pair, power and sensing metal-oxide semiconductor field effect transistors (MOSFETs) with size ratio of K, is used in our on-chip current sensing circuit. Very low drain voltages of the current mirror pair should be matched to give accurate current sensing, so a folded-cascode opamp with a PMOS input pair is used in our design. A high voltage high side lateral-diffused MOS transistor (LDMOST) switch is used between the current sensing circuit and power MOSFET to protect the current sensing circuit from the high output voltage. Simulation results using 0.35 ${\mu}m$ BCD process show that current sensing is accurate and the pulse frequency modulation (PFM) boost converter using the proposed current sensing circuit satisfies with the specifications.

경면 연삭기 베드를 위한 레진 콘크리트에 관한 연구

  • 김현석;김기수;이대길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.108-113
    • /
    • 1993
  • The material for the machine tool structure should have high static stiffiness and damping in its property to improve both the static and dynamic performances. The static stiffness of a machine tool can be inceased by using either higher modulus material in the structure of a machine tool. However, the machine tool structrue with high stiffness but low damping is vulnerable to vibration at the resonance frequencies of the structure . For the high precision and highsped machine tool structure, therefore, the high damping capacity is most important in order to suppress vibration. The damping of a machine tool can not be increased by increasing the static stiffness. The best way to increase the damping capacity of the machine tool structure is to use a composite material which is composed of on material with high stiffness with low damping and another material with low stiffness with high damping. Therefore, in this paper, the bed of the ultra high precision grinding machine for mirror surface machining of brittle materials such as ceramics and composite materials was designed and manufactured with the epoxy concrete material. The epoxy concrete material was prepared by mixing epoxy resin with different size sands and gravels. The modulus, compressive strength, coefficient of thermal expansion, specific heat, and damping factor were measured by varying the compaction ratio, sizes and contents of the ingredients to assess the effect of the processing parameters on the mechanical properties of the material. Based of the measured properties, the prototype epoxy resin concrete bed for the mirror surface CNC grinding machine was designed and manufactured.

Design of Concentrating System for Solar Side-pumped Slab Laser

  • Fan, Wentong;Liu, Yan;Guo, Pan;Deng, Rui;Li, Nan;Ding, Fukang;Li, Yasha;Zhou, Jun;Xie, Shiwei
    • Current Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.50-56
    • /
    • 2020
  • The design of a concentration system for a solar side-pumped slab laser was investigated. The side size of the slab laser medium is 2 mm × 20 mm. Based on the principle of the edge ray, a secondary concentrating system consisting of a rectangular parabolic mirror (RPM) and a rectangular dielectric-filled compound parabolic concentrator (RDCPC) was demonstrated. The focal length of RPM is 1200 mm and the size is 734 mm × 2000 mm. The outlet size of the RDCPC is 2 mm × 20 mm. The concentration effect was analyzed by using Tracepro optical software. The results showed that the concentration efficiency reached 81.3% and the uniformity of the spot was 91.4% after optimization. This design of concentration system is of great reference value for a solar side-pumped slab laser.

Relationships between Wheel Velocity and Surface Roughness in the Electrolytic In-Process Dressing(ELID) Grinding (전해드레싱연삭에서 숫돌주속과 표면거칠기의 관계)

  • 차명섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.459-464
    • /
    • 2000
  • In this paper, it verifies the relationships between wheel velocity and surface roughness with the mirror surface grinding using electrolytic in-process dressing (ELID). In the general, as wheel velocity is high, surface roughness is better on the base of grinding theory. However, the relationships between wheel velocity and surface roughness is undefined due to the effect of electro-chemical dressing and the characteristics of materials. According to above relationships, ELID grinding experiment is carried out by following the change of wheel velocity. As the result of this study, it is found that surface roughness is not better as linearly as the increase of wheel velocity, but the limit of wheel velocity exists according to the characteristics of materials. Also, in contradiction to the present trend of high wheel velocity of manufacturing system for high surface integrity, it is able to expected to the base on the development of new ultra precision grinding method with the practicality of mirror surface grinding using ELID grinding method.

  • PDF

The Effect of Roll Arrangement in the Cold Rolling Mill on the Wear (냉간 압연기용 롤의 배열이 마멸에 미치는 영향)

  • 손영지
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.74-80
    • /
    • 1999
  • Work roll wear in the cold rolling of mild steel strip is strongly affected by rolling materials, rolling conditions such as roll arrangement in the cold rolling mill and lubrication. The tests were performed to find the effects of roll arrangement n the cold rolling mill on the work roll wear under the same lubricating conditions. The obtained results are as follows:If the distance of cold rolling is about 60km, the surface roughness of its was reduced by half(Ra 0.49${\mu}{\textrm}{m}$) and Pc(peak count) also was decreased to 60 ea/cm.It is easier for CC(Continuous casting) to make a slip on rolling than IC(Ingot casting). It is due to surface mirror in which first residual product appears and iron powder included Al2O3 is sticked. Because bending degree of 4Hi-rolling mill is higher than 6Hi-rolling mill, the first surface mirror was occurred to its center-point which is loaded strongly. 6Hi-rolling mill shape-controlled by intermediate roll doesn't need the initial crown to work roll. Therefore, fatigue and wear would appear a little bit.

  • PDF

Hyundai Motor's 4th NVH open BMT - Wind noise prediction on the HSM (Hyundai simplified model) using Ansys Fluent and LMS Virtual.Lab

  • Hallez, Raphael;Lee, Sang Yeop;Khondge, Ashok;Lee, Jeongwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.562-562
    • /
    • 2014
  • Assessment of aerodynamic noise is becoming increasingly important for automotive manufacturers. Flow passing a vehicle may indeed lead to high interior noise level and affect cabin comfort. Interior noise results from various mechanisms including aerodynamic fluctuations of the disturbed flow around the side mirror or pillar, hydrodynamic and acoustic loading of the car panels and windows, vibration of these panels and acoustic radiation inside the vehicle. Objective of the present study is to capture these important mechanisms in a simulation model and demonstrate the ability of the combined simulation tools Fluent / Virtual.Lab to provide accurate aerodynamic and interior noise prediction results. Previous study focused on the noise generated by the turbulence around the A-pillar structure of the HSM (Hyundai simplified model). The present study also includes the effect of the side-mirror and rain-gutter structures. Complete modeling process is presented including details on the unsteady CFD simulation and the vibro-acoustic model with absorption materials. Guidelines and best practices for building the simulation model are also discussed.

  • PDF

Development of the RTP System for Metal Alloy using One Lamp (한 개의 Lamp를 이용한 Metal Alloy용 RTP 장비 개발)

  • Choi, Jin-Ho;Lee, Dong-Youb
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.254-257
    • /
    • 1996
  • A Rapid Thermal Processing (RTP) system operated below $500^{\circ}C$ has been designed and constructed. It uses an optical pyrometer for measuring wafer temperature, the sensing range of pyrometer is from $2.0{\mu}m$ to $2.4{\mu}m$. To remove the interference effect by IR emitted from lamps an IR filter is adapted which uses water. The best condition for Al alloy using the RTP system is $425^{\circ}C$ for ten seconds. The RTP system uses many lamps for supplying enough power in processing wafer because the absorption wavelength range of IF filter is from $1.3{\mu}m$ to $4.0{\mu}m$. However, reproducibility and uniformity is reduced due to the difference of lamp characteristics. Therefore, for improving the reproducibility and uniformity new RTP system using one lamp is designed. The new RTP system uses a focusing mirror and it focuses the light of lamp. The curverture of the focusing mirror is controlled to supply uniform power in processing wafer. The result of computer simulation shows the possibility of new RTP system using one lamp.

  • PDF