• 제목/요약/키워드: minor allele frequency

검색결과 41건 처리시간 0.027초

Single-trait GWAS of Leaf Rolling Index with the Korean Rice Germplasm

  • ByeongYong Jeong;Muhyun Kim;Tae-Ho Ham;Seong-Gyu Jang;Ah-Rim Lee;Min young Song;Soon-Wook Kwon;Joohyun Lee
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.17-17
    • /
    • 2022
  • Leaves are an important organism for photosynthesis and transpiration. The shape of leaf is crucial factor affecting plant architecture. V-shape leaf rolling is enhancing canopy photosynthesis by increasing the CO2 penetration and the light capture by reducing the shadow between the leaves. Therefore, moderate leaf rolling is thought to more high grain yield per area than flat leaf. We investigated 278 KRICE_CORE accession's Adaxial Leaf Rolling Index (LRI) in first heading using the following equation. For each accession, genomic DNA was used for sequencing. We sequenced the genomics with ~8 X coverage to detect SNPS. Raw reads were aligned against the rice reference (IRGSP 1.0) for SNP identification and genotype calling. To generate genotype data for GWAS, SNPs were filtered with minor allele frequency 0.05. Finally, 841,134 high-quality SNPs were used for our GWAS. The significant threshold was -log10(P)>7.23. From the results, 2 significance SNP were detected. Considering the LD block of 250kbp, 60 candidate gene were selected including Hypothetical gene and Conserved gene. In this poster, we analyzed candidate gene affecting adaxial Leaf Rolling through single-trait GWAS.

  • PDF

Single-trait GWAS of Leaf Rolling Index with the Korean Rice Germplasm

  • ByeongYong Jeong;Muhyun Kim;Tae-Ho Ham;Seong-Gyu Jang;Ah-Rim Lee;Min young Song;Soon-Wook Kwon;Joohyun Lee
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.243-243
    • /
    • 2022
  • Leaves are an important organism for photosynthesis and transpiration. The shape of leaf is crucial factor affecting plant architecture. V-shape leaf rolling is enhancing canopy photosynthesis by increasing the CO2 penetration and the light capture by reducing the shadow between the leaves. Therefore, moderate leaf rolling is thought to more high grain yield per area than flat leaf. We investigated 278 KRICE CORE accession's Adaxial Leaf Rolling Index (LRI) in first heading using the following equation. For each accession, genomic DNA was used for sequencing. We sequenced the genomics with ~8 X coverage to detect SNPS. Raw reads were aligned against the rice reference (IRGSP 1.0) for SNP identification and genotype calling. To generate genotype data for GWAS, SNPs were filtered with minor allele frequency 0.05. Finally, 841,134 high-quality SNPs were used for our GWAS. The significant threshold was -log10(P) >7.23. From the results, 2 significance SNP were detected. Considering the LD block of 250kbp, 60 candidate gene were selected including Hypothetical gene and Conserved gene. In this poster, we analyzed candidate gene affecting adaxial Leaf Rolling through single-trait GWAS.

  • PDF

한국인 정신분열증 환자와 도파민 $D_3$ 수용체 유전자의 연합 (Lack of Association Between the Dopamine $D_3$ Receptor Gene and Korean Schizophrenic Patients)

  • 한문균;이민수;이대희
    • 생물정신의학
    • /
    • 제2권2호
    • /
    • pp.237-247
    • /
    • 1995
  • 도파민 $D_3$ 수용체 유전자와 정신분열증 병인과의 연관성을 밝히고자 본 연구에서는 한국에서의 정신분열증환자 66명과 정상대조군 76명에서 다형성의 분포를 PCR을 이용하여 환자대조연구 방법으로 조사하였다. 정신분열증환자에서 대립유전자 1의 빈도는 0.66이었고, 정상 대조군에서는 0.76이었다. 즉, 두군간에 대립유전자 1의 빈도에는 유의한 차이가 없었고, 양성 및 음성 증상군 척도평가에 의한 정신분열증의 양성아형과 음성아형간에도 유의한 차이가 없었다. 정신분열증 환지에서는 전체 66명중 동형 접합체가 43명으로 65.1%. 이형 접합체는 23명으로 34.9%였다. 정상 대조군에서는 전체 76명중 동형접합체가 54명으로 71.1%. 이형접합체는 28.9%였다. 이러한 결과는 이전의 정신분열증과 도파민 $D_3$ 수용체 유전자간의 연관관계를 연구한 외국의 연구결과와 일치하며 도파민 $D_3$ 수용체 유전자가 정신분열증 병인의 원인일 것이라는 가설을 뒷받침하지는 못하였다.

  • PDF

Identification of Genomic Differences between Hanwoo and Holstein Breeds Using the Illumina Bovine SNP50 BeadChip

  • Melka, Hailu Dadi;Jeon, Eun-Kyeong;Kim, Sang-Wook;Han, James-Bond;Yoon, Du-Hak;Kim, Kwan-Suk
    • Genomics & Informatics
    • /
    • 제9권2호
    • /
    • pp.69-73
    • /
    • 2011
  • The use of genomic information in genomic selection programs for dairy and beef cattle breeds has become a reality in recent years. In this investigation, we analyzed single-nucleotide polymorphisms (SNPs) for Hanwoo (n=50) and Holstein (n=50) breeds using the Illumina Bovine SNP50 BeadChip to facilitate genomic selection and utilization of the Hanwoo breed in Korea. Analysis of the entire genomes showed different spectra of SNP frequencies for Hanwoo and Holstein cattle. The study revealed a highly significant (p<0.001) difference between Hanwoo and Holstein cattle in minor allele frequency (MAF). The average MAFs were $0.19{\pm}0.16$ and $0.22{\pm}0.16$ for Hanwoo and Holstein, respectively. From the total of 52,337 SNPs that were successfully identified, about 72% and 79% were polymorphic in Hanwoos and Holsteins, respectively. Polymorphic and fixed SNPs were not distributed uniformly across the chromosomes within breeds or between the two breeds. The number of fixed SNPs on all chromosomes was higher in Hanwoo cattle, reflecting the genetic uniqueness of the Hanwoo breed. In general, the rate of polymorphisms detected in these two breeds suggests that the SNPs can be used for different applications, such as whole-genome association and comparative genetic studies, and are a helpful tool in developing breed identification genetic markers.

한국인 기관지 천식 허증(虛證), 실증(實證) 환자와 CD46 유전자 다형성과의 관계 (Exonic SNP (rs7144, 3’-UTR) in CD46 Molecule and Complement Regulatory Protein (CD46) Gene Associated with Excess Syndrome to Categorize Korean Bronchial Asthma Patients)

  • 이매;백현정;박의근;김관일;이범준;김수강;정주호;김진주;김미아;정희재;정승기
    • 대한한방내과학회지
    • /
    • 제36권4호
    • /
    • pp.547-561
    • /
    • 2015
  • Objectives In this study, we divided Korean asthma patients into excess syndrome or deficiency syndrome groups according to clinical phenotype. Genetic analysis was conducted to investigate the association of exonic SNPs in the CD46 gene polymorphism with the clinical phenotype based on the differentiation syndrome of the bronchial asthma patients.Methods There were 95 healthy patients (control group) and 53 asthma patients. (The deficiency syndrome group included 24 and the excess syndrome group 29). We searched the exonic areas of the CD46 gene in the NCBI website SNPs with <0.01 minor allele frequency (MAF) and <0.01 heterozygosity. We finally selected two SNPs: rs138843816, Ser13Phe and rs7144, 3’-UTR. Hardy-Weinberg equilibrium was calculated using SNPStats.Results There were significant differences in the codominant 1 model and the dominant model between the healthy group and the asthma group. There were significant differences between deficiency syndrome group and the excess syndrome group in the genotype frequencies and in the codominant 1 model, the dominant model, and the log-additive model. The allele frequency of rs7144C showed a significant difference between the deficiency syndrome group and the excess syndrome group. Two-SNP haplotype analysis showed a significant difference in frequency in the deficiency syndrome group and in the excess syndrome group. There were significant differences between the healthy group and the excess syndrome group in the codominant 1 model, the dominant model, and the log-additive model. The frequency of the rs7144 C allele exhibited a significant difference in the demonstration. SNP haplotype analysis between the healthy group and the excess syndrome group showed a significant difference in the frequency of the CT haplotype and the CC haplotype.Conclusions The results indicate that two CD46 SNPs (rs138843816, Ser13Phe and rs7144, 3′–UTR) might be associated with the symptomatic excess syndrome in Korean asthma patients.

Genome-wide association study of carcass weight in commercial Hanwoo cattle

  • Edea, Zewdu;Jeoung, Yeong Ho;Shin, Sung-Sub;Ku, Jaeul;Seo, Sungbo;Kim, Il-Hoi;Kim, Sang-Wook;Kim, Kwan-Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권3호
    • /
    • pp.327-334
    • /
    • 2018
  • Objective: The objective of the present study was to validate genes and genomic regions associated with carcass weight using a low-density single nucleotide polymorphism (SNP) Chip in Hanwoo cattle breed. Methods: Commercial Hanwoo steers (n = 220) were genotyped with 20K GeneSeek genomic profiler BeadChip. After applying the quality control of criteria of a call rate ${\geq}90%$ and minor allele frequency (MAF) ${\geq}0.01$, a total of 15,235 autosomal SNPs were left for genome-wide association (GWA) analysis. The GWA tests were performed using single-locus mixed linear model. Age at slaughter was fitted as fixed effect and sire included as a covariate. The level of genome-wide significance was set at $3.28{\times}10^{-6}$ (0.05/15,235), corresponding to Bonferroni correction for 15,235 multiple independent tests. Results: By employing EMMAX approach which is based on a mixed linear model and accounts for population stratification and relatedness, we identified 17 and 16 loci significantly (p<0.001) associated with carcass weight for the additive and dominant models, respectively. The second most significant (p = 0.000049) SNP (ARS-BFGL-NGS-28234) on bovine chromosome 4 (BTA4) at 21 Mb had an allele substitution effect of 43.45 kg. Some of the identified regions on BTA2, 6, 14, 22, and 24 were previously reported to be associated with quantitative trait loci for carcass weight in several beef cattle breeds. Conclusion: This is the first genome-wide association study using SNP chips on commercial Hanwoo steers, and some of the loci newly identified in this study may help to better DNA markers that determine increased beef production in commercial Hanwoo cattle. Further studies using a larger sample size will allow confirmation of the candidates identified in this study.

Detection of p53 Common Intron Polymorphisms in Patients with Gastritis Lesions from Iran

  • Sadeghi, Rouhallah Najjar;Damavand, Behzad;Vahedi, Mohsen;Mohebbi, Seyed Reza;Zojazi, Homayon;Molaei, Mahsa;Zali, Mohamad Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.91-96
    • /
    • 2013
  • Background: p53 alterations have been implicated in the development of many cancers, such as gastric cancer, but there is no evidence of p53 intron alterations in gastritis lesions. The aim of this study was to investigate the p53 intron alterations in gastritis along with p53 and mismatch repair protein expression and microsatellite status. Materials and Methods: PCR-sequencing was conducted for introns 2-7 on DNA extracted from 97 paired samples of gastritis lesions and normal adjacent tissue. Abnormal accumulation of p53 and mismatch repair proteins was investigated using immunohistochemistry. In addition, microsatellite status was evaluated with reference to five mononucleotide markers. Results: Gastritis cases included 41 males and 56 females in the age range of 15-83 years, 87.6% being H.pylori positive. IVS2+38, IVS3ins16 and IVS7+72 were the most polymorphic sites. Their minor allele frequency values were as follows: 0.38, 0.21 and 0.06, respectively. Samples with GG genotype at IVS2+38 and CT at IVS7+72 had no insertion. Moreover, most of the stable samples (91.9 %) had a G allele at IVS2+38. All of the samples were IHC negative for p53 protein, microsatellite stable and expressed mismatch repair proteins. p53 alterations were prominent in the H. Pylori+ group, but without statistical significance. Conclusions: According to our results, some p53 polymorphisms such as IVS2+38, IVS3ins16 and IVS7+72, because of their correlations together or with microsatellite status may contribute to gastritis development. However, so far effects on p53 expression and function remain unclear. Therefore, a comprehensive survey is needed to delineate their biological significance.

Simulation Study on Parentage Analysis with SNPs in the Japanese Black Cattle Population

  • Honda, Takeshi;Katsuta, Tomohiro;Mukai, Fumio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권10호
    • /
    • pp.1351-1358
    • /
    • 2009
  • Parentage tests using polymorphic DNA marker are commonly performed to avoid incorrect recording of the parental information of livestock animals, and single-nucleotide polymorphisms (SNPs) are becoming the method of choice. In Japanese Black cattle, parentage tests based on the exclusion method using microsatellite markers are currently conducted; however, an alternative SNP system aimed at parentage tests has recently been developed. In the present study, two types of simulations were conducted using the pedigree data of two subpopulations in the breed (subpopulations of Hyogo and Shimane prefectures) in order to examine the effect of actual genetic and breeding structures. The first simulation (simulation 1) investigated the usefulness of SNPs for excluding a close relative of the true sire; the second one (simulation 2) investigated the accuracy of sire identification tests for multiple full-sib putative sires by a combined method of exclusion and paternity assignment based on the LOD score. The success rates of excluding a single fullsib and sire of the true sires were, respectively, 0.9915 and 0.9852 in Hyogo and 0.9848 and 0.9852 in Shimane, when 50 SNPs with minor allele frequency (MAF: q) of 0.25${\leq}$q${\leq}$0.35 were used in simulation 1. The success rates of sire identification tests based solely on the exclusion method were relatively low in simulation 2. However, assuming that 50 SNPs with MAF of 0.25${\leq}$q${\leq}$0.35 or 0.45${\leq}$q${\leq}$0.5 were available, the total success rates including achievements due to paternity assignment were, respectively, 0.9430 and 0.9681 in Hyogo and 0.8999 and 0.9399 for Shimane, even when each true sire was assumed to compete with 50 full-sibs.

Sample Size and Statistical Power Calculation in Genetic Association Studies

  • Hong, Eun-Pyo;Park, Ji-Wan
    • Genomics & Informatics
    • /
    • 제10권2호
    • /
    • pp.117-122
    • /
    • 2012
  • A sample size with sufficient statistical power is critical to the success of genetic association studies to detect causal genes of human complex diseases. Genome-wide association studies require much larger sample sizes to achieve an adequate statistical power. We estimated the statistical power with increasing numbers of markers analyzed and compared the sample sizes that were required in case-control studies and case-parent studies. We computed the effective sample size and statistical power using Genetic Power Calculator. An analysis using a larger number of markers requires a larger sample size. Testing a single-nucleotide polymorphism (SNP) marker requires 248 cases, while testing 500,000 SNPs and 1 million markers requires 1,206 cases and 1,255 cases, respectively, under the assumption of an odds ratio of 2, 5% disease prevalence, 5% minor allele frequency, complete linkage disequilibrium (LD), 1:1 case/control ratio, and a 5% error rate in an allelic test. Under a dominant model, a smaller sample size is required to achieve 80% power than other genetic models. We found that a much lower sample size was required with a strong effect size, common SNP, and increased LD. In addition, studying a common disease in a case-control study of a 1:4 case-control ratio is one way to achieve higher statistical power. We also found that case-parent studies require more samples than case-control studies. Although we have not covered all plausible cases in study design, the estimates of sample size and statistical power computed under various assumptions in this study may be useful to determine the sample size in designing a population-based genetic association study.

Mutation analyses in Korean patients with MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes)

  • Yoo, Han-Wook;Kim, Gu-Hwan;Ko, Tae-Sung
    • Journal of Genetic Medicine
    • /
    • 제1권1호
    • /
    • pp.39-43
    • /
    • 1997
  • The mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is inherited maternally, in which the MTTL1*MELAS 3243 mutation has been most commonly found as a heteroplasmy of A to G point mutation in the $tRNA^{Leu(UUR)}$ gene. The MTTL1*MELAS 3271 mutation is known to be the second common mutation, though clinical features of both mutations are not remarkably different. Recently, a variety of minor mutations have been reported in patients with MELAS. In this study, major efforts have been made to investigate the allele frequency of major three mutations including MTTL1*MELAS 3243, 3252, 3271 in 10 Korean families with MELAS probands. The PCR and subsequent direct sequencing of the PCR product in the regions spanning these three mutation sites were employed to identify the mutation in each proband. All family members have been screened for the presence of these three mutations by PCR-RFLP assay using Apa I, Acc I and Bfr I restriction enzymes. The MTTL1*MELAS 3243 mutation was most commonly found (7 out of 10 families tested) followed by the MTTL1*MELAS 3271 which was identified in 1 out of 10 families. In the remaining 2 families none of three mutations were found, indicating the presence of either nuclear mutation or yet unidentified mitochondrial DNA mutation in these families.

  • PDF