Browse > Article
http://dx.doi.org/10.5713/ajas.2009.80680

Simulation Study on Parentage Analysis with SNPs in the Japanese Black Cattle Population  

Honda, Takeshi (Food Resources Education and Research Center, Graduate School of Agricultural Science, Kobe University)
Katsuta, Tomohiro (Wagyu Registry Association)
Mukai, Fumio (Wagyu Registry Association)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.22, no.10, 2009 , pp. 1351-1358 More about this Journal
Abstract
Parentage tests using polymorphic DNA marker are commonly performed to avoid incorrect recording of the parental information of livestock animals, and single-nucleotide polymorphisms (SNPs) are becoming the method of choice. In Japanese Black cattle, parentage tests based on the exclusion method using microsatellite markers are currently conducted; however, an alternative SNP system aimed at parentage tests has recently been developed. In the present study, two types of simulations were conducted using the pedigree data of two subpopulations in the breed (subpopulations of Hyogo and Shimane prefectures) in order to examine the effect of actual genetic and breeding structures. The first simulation (simulation 1) investigated the usefulness of SNPs for excluding a close relative of the true sire; the second one (simulation 2) investigated the accuracy of sire identification tests for multiple full-sib putative sires by a combined method of exclusion and paternity assignment based on the LOD score. The success rates of excluding a single fullsib and sire of the true sires were, respectively, 0.9915 and 0.9852 in Hyogo and 0.9848 and 0.9852 in Shimane, when 50 SNPs with minor allele frequency (MAF: q) of 0.25${\leq}$q${\leq}$0.35 were used in simulation 1. The success rates of sire identification tests based solely on the exclusion method were relatively low in simulation 2. However, assuming that 50 SNPs with MAF of 0.25${\leq}$q${\leq}$0.35 or 0.45${\leq}$q${\leq}$0.5 were available, the total success rates including achievements due to paternity assignment were, respectively, 0.9430 and 0.9681 in Hyogo and 0.8999 and 0.9399 for Shimane, even when each true sire was assumed to compete with 50 full-sibs.
Keywords
Parentage Analysis; SNPs; Simulation; Japanese Black; Pedigree Analysis;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Double, M. C., A. Cockburn, S. C. Barry and P. E. Smouse. 1997, Exclusion probabilities for single-locus paternity analysis when related males compete for matings, Mol. Ecol. 6:1155-1166   DOI   ScienceOn
2 Gomez-Raya, L., K. Priest, W. M. Rauw, M. Okomo-Adhiambo, D. Thain, B. Bruce, A. Rink, R. Torell, L. Grellman, R. Narayanan and C. W. Beattie. 2008, The value of DNA paternity identification in beef cattle: Examples from Nevada's free-range ranches, J. Anim. Sci. 86:17-24   PUBMED
3 Heaton, M. P., G. P. Harhay, G. L. Bennett, R. T. Stone, W. M. Grosse, E. Casas, J. W. Keele, T. P. L. Smith, C. G. Chitko- McKown and W. W. Laegreid. 2002, Selection and use of SNP markers for animal identification and paternity analysis in US beef cattle. Mamm, Genome 13:272-281
4 Honda, T., T. Nomura, Y. Yamaguchi and F. Mukai. 2002, Pedigree analysis of genetic subdivision in a population of Japanese Black cattle, Anim. Sci. J. 73:445-452   DOI
5 Marshall, T. C., J. Slate, L. E. B. Kruuk and J. M. Pemberton. 1998, Statistical confidence for likelihood-based paternity inference in natural populations, Mol. Ecol 7:639-655   DOI   ScienceOn
6 Rohrer, G. A., B. A. Freking and D. Nonneman. 2007, Single nucleotide polymorphisms for pig identification and parentage exclusion, Anim. Genet. 38:253-258   DOI   ScienceOn
7 Baruch, E. and J. I. Weller. 2008, Estimation of the number of SNP genetic markers required for parentage verification, Anim. Genet. 39:474-479   DOI   ScienceOn
8 Nei, M. 1977, F-statistics and analysis of gene diversity in subdivided populations, Ann. Hum. Genet. 41:225-233   DOI   PUBMED   ScienceOn
9 Dodds, K. G., M. L. Tate and J. A. Sise. 2005, Genetic evaluation using parentage information from genetic markers, J. Anim. Sci. 83:2271-2279   PUBMED
10 Robertson, A. 1965, The interpretation of genotypic ratios in domestic animal populations, Anim. Prod. 7:319-324   DOI   ScienceOn
11 Meagher, T. R. 1986, Analysis of paternity within a natural population of Chamaelirium luteum. I. Identification of mostlikely male parents, Am. Nat. 128:199-215   DOI   ScienceOn
12 Wang, J. 1996, Deviation from Hardy-Weinberg proportions in finite populations, Genet. Res., Camb. 68:249-257   DOI   ScienceOn
13 Caballero, A. and M. A. Toro. 2000, Interrelations between effective population size and other pedigree tools for management of conserved populations, Genet. Res. Camb. 75:331-343   DOI   ScienceOn
14 MacCluer, J. W., J. L. VandeBerg, B. Read and O. A. Ryder. 1986, Pedigree analysis by computer simulation, Zoo. Biol. 5:147-160   DOI
15 Frankham, R., J. D. Ballou and D. A. Briscoe. 2002. Introduction to Conservation Genetics. Cambridge University Press, Cambridge
16 Hill, W. G., B. A. Salisbury and A. J. Webb. 2008, Parentage identification using single nucleotide polymorphism genotypes: Application to product tracing, J. Anim. Sci. 86:2508-2517   DOI   ScienceOn
17 Chakraborty, R., T. R. Meagher and P. E. Smouse. 1988, Parentage analysis with genetic markers in natural populations. I. The expected proportion of offspring with unambiguous paternity, Genetics 118:527-536   PUBMED
18 Anderson, E. C. and J. C. Garza. 2006, The power of singlenucleotide polymorphisms for large-scale parentage inference, Genetics 172:2567-2582   DOI   ScienceOn
19 Kalinowski, S. T., M. L. Taper and T. C. Marshall. 2007, Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment, Mol. Ecol. 16:1099-1106   DOI   ScienceOn
20 Werner, F. A. O., G. Durstewitz, F. A. Habermann, G. Thaller, W. Kr$\ddot{a}$mer, S. Kollers, J. Buitkamp, M. Georges, G. Brem, J. Mosner and R. Fries. 2004, Detection and characterization of SNPs useful for identity control and parentage testing in major European dairy breeds, Anim. Genet. 35:44-49   DOI   ScienceOn
21 Jones, A. and W. R. Ardren. 2003, Methods of parentage analysis in natural populations, Mol. Ecol. 12:2511-2523   DOI   ScienceOn
22 Dodds, K. G., M. L. Tate, J. C. McEwan and A. M. Crawford. 1996, Exclusion probabilities for pedigree testing farm animals, Theor. Appl. Genet. 92:966-975   DOI   ScienceOn
23 Eenennaam, A. L. V., R. L. Weaber, D. J. Drake, M. C. T. Penedo, R. L. Quaas, D. J. Garrick and E. J. Pollak. 2007, DNA-based paternity analysis and genetic evaluation in a large, commercial cattle ranch setting, J. Anim. Sci. 85:3159-3169   DOI   ScienceOn