• Title/Summary/Keyword: mining system

검색결과 1,850건 처리시간 0.025초

침입탐지시스템의 경보데이터 분석을 위한 데이터 마이닝 프레임워크 (An Alert Data Mining Framework for Intrusion Detection System)

  • 신문선
    • 한국산학기술학회논문지
    • /
    • 제12권1호
    • /
    • pp.459-466
    • /
    • 2011
  • 이 논문에서는 침입 탐지시스템의 체계적인 경보데이터관리 및 경보데이터 상관관계 분석을 위하여 데이터 마이닝 기법을 적용한 경보 데이터 마이닝 프레임워크를 제안한다. 적용된 마이닝 기법은 속성기반 연관규칙, 속성기반 빈발에피소드, 오경보 분류, 그리고 순서기반 클러스터링이다. 이들 구성요소들은 각각 대량의 경보 데이터들로부터 알려지지 않은 패턴을 탐사하여 공격시나리오를 유추하거나, 공격 순서를 예측하는 것이 가능하며, 데이터의 그룹화를 통해 고수준의 의미를 추출할 수 있게 해준다. 실험 및 평가를 위하여 제안된 경보데이터 마이닝 프레임워크의 프로토타입을 구축하였으며 프레임워크의 기능을 검증하였다. 이 논문에서 제안한 경보 데이터 마이닝 프레임워크는 기존의 경보데이터 상관관계분석에서는 해결하지 못했던 통합적인 경보 상관관계 분석 기능을 수행할 뿐만 아니라 대량의 경보데이터에 대한 필터링을 수행하는 장점을 가진다. 또한 추출된 규칙 및 공격시나리오는 침입탐지시스템의 실시간 대응에 활용될 수 있다.

전략중심의 CRM구조의 데이터마이닝 (Data Mining for Strategy focused CRM Structure)

  • 윤용운
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2004년도 추계학술대회 및 정기총회
    • /
    • pp.399-405
    • /
    • 2004
  • With the explosive growth of information sources available under various information technology and business environment, it has become increasingly necessary for determining effective marketing strategies and optimizing the logical structure of the CRM data mining system. In this paper, we present an overview of the data mining for strategy focused CRM structure. This includes preprocessing, transaction identification and data integration components. We describe the main part of this paper to the discussion of processes and problems that characterize the mining tools and techniques, identify the CRM data mining, and provide a general architecture of a system to do focused CRM data mining that require further research and development.

  • PDF

Students' Performance Prediction in Higher Education Using Multi-Agent Framework Based Distributed Data Mining Approach: A Review

  • M.Nazir;A.Noraziah;M.Rahmah
    • International Journal of Computer Science & Network Security
    • /
    • 제23권10호
    • /
    • pp.135-146
    • /
    • 2023
  • An effective educational program warrants the inclusion of an innovative construction which enhances the higher education efficacy in such a way that accelerates the achievement of desired results and reduces the risk of failures. Educational Decision Support System (EDSS) has currently been a hot topic in educational systems, facilitating the pupil result monitoring and evaluation to be performed during their development. Insufficient information systems encounter trouble and hurdles in making the sufficient advantage from EDSS owing to the deficit of accuracy, incorrect analysis study of the characteristic, and inadequate database. DMTs (Data Mining Techniques) provide helpful tools in finding the models or forms of data and are extremely useful in the decision-making process. Several researchers have participated in the research involving distributed data mining with multi-agent technology. The rapid growth of network technology and IT use has led to the widespread use of distributed databases. This article explains the available data mining technology and the distributed data mining system framework. Distributed Data Mining approach is utilized for this work so that a classifier capable of predicting the success of students in the economic domain can be constructed. This research also discusses the Intelligent Knowledge Base Distributed Data Mining framework to assess the performance of the students through a mid-term exam and final-term exam employing Multi-agent system-based educational mining techniques. Using single and ensemble-based classifiers, this study intends to investigate the factors that influence student performance in higher education and construct a classification model that can predict academic achievement. We also discussed the importance of multi-agent systems and comparative machine learning approaches in EDSS development.

Automated Classification of PubMed Texts for Disambiguated Annotation Using Text and Data Mining

  • Choi, Yun-Jeong;Park, Seung-Soo
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.101-106
    • /
    • 2005
  • Recently, as the size of genetic knowledge grows faster, automated analysis and systemization into high-throughput database has become hot issue. One essential task is to recognize and identify genomic entities and discover their relations. However, ambiguity of name entities is a serious problem because of their multiplicity of meanings and types. So far, many effective techniques have been proposed to analyze documents. Yet, accuracy is high when the data fits the model well. The purpose of this paper is to design and implement a document classification system for identifying entity problems using text/data mining combination, supplemented by rich data mining algorithms to enhance its performance. we propose RTP ost system of different style from any traditional method, which takes fault tolerant system approach and data mining strategy. This feedback cycle can enhance the performance of the text mining in terms of accuracy. We experimented our system for classifying RB-related documents on PubMed abstracts to verify the feasibility.

  • PDF

A Prototyping Framework of the Documentation Retrieval System for Enhancing Software Development Quality

  • Chang, Wen-Kui;Wang, Tzu-Po
    • International Journal of Quality Innovation
    • /
    • 제2권2호
    • /
    • pp.93-100
    • /
    • 2001
  • This paper illustrates a prototyping framework of the documentation-standards retrieval system via the data mining approach for enhancing software development quality. We first present an approach for designing a retrieval algorithm based on data mining, with the three basic technologies of machine learning, statistics and database management, applied to this system to speed up the searching time and increase the fitness. This approach derives from the observation that data mining can discover unsuspected relationships among elements in large databases. This observation suggests that data mining can be used to elicit new knowledge about the design of a subject system and that it can be applied to large legacy systems for efficiency. Finally, software development quality will be improved at the same time when the project managers retrieving for the documentation standards.

  • PDF

유전적 프로그래밍과 SOM을 결합한 개선된 선박 설계용 데이터 마이닝 시스템 개발 (Development of Data Mining System for Ship Design using Combined Genetic Programming with Self Organizing Map)

  • 이경호;박종훈;한영수;최시영
    • 한국CDE학회논문집
    • /
    • 제14권6호
    • /
    • pp.382-389
    • /
    • 2009
  • Recently, knowledge management has been required in companies as a tool of competitiveness. Companies have constructed Enterprise Resource Planning(ERP) system in order to manage huge knowledge. But, it is not easy to formalize knowledge in organization. We focused on data mining system by genetic programming(GP). Data mining system by genetic programming can be useful tools to derive and extract the necessary information and knowledge from the huge accumulated data. However when we don't have enough amounts of data to perform the learning process of genetic programming, we have to reduce input parameter(s) or increase number of learning or training data. In this study, an enhanced data mining method combining Genetic Programming with Self organizing map, that reduces the number of input parameters, is suggested. Experiment results through a prototype implementation are also discussed.

PubMiner: Machine Learning-based Text Mining for Biomedical Information Analysis

  • Eom, Jae-Hong;Zhang, Byoung-Tak
    • Genomics & Informatics
    • /
    • 제2권2호
    • /
    • pp.99-106
    • /
    • 2004
  • In this paper we introduce PubMiner, an intelligent machine learning based text mining system for mining biological information from the literature. PubMiner employs natural language processing techniques and machine learning based data mining techniques for mining useful biological information such as protein­protein interaction from the massive literature. The system recognizes biological terms such as gene, protein, and enzymes and extracts their interactions described in the document through natural language processing. The extracted interactions are further analyzed with a set of features of each entity that were collected from the related public databases to infer more interactions from the original interactions. An inferred interaction from the interaction analysis and native interaction are provided to the user with the link of literature sources. The performance of entity and interaction extraction was tested with selected MEDLINE abstracts. The evaluation of inference proceeded using the protein interaction data of S. cerevisiae (bakers yeast) from MIPS and SGD.

PROCL:프로세스 로그 클러스터링 시스템 (PROCL:A Process Log Clustering System)

  • 정재윤
    • 한국전자거래학회지
    • /
    • 제13권2호
    • /
    • pp.181-194
    • /
    • 2008
  • 프로세스 마이닝은 프로세스 실행 결과로부터 유용한 프로세스 정보를 추출하는 연구이다. BPMS, ERP, SCM 등 프로세스 인식 정보시스템들이 확산되면서 프로세스 마이닝 연구가 더욱 활발해지고 있다. 본 논문에서는 프로세스 마이닝 이전에 먼저 프로세스 로그를 군집화하는 방법과 구현 시스템을 제시한다. 본 연구의 프로세스 로그 클러스터링은 기존에 제시된 여러 가지 프로세스 마이닝 알고리즘들과 함께 사용함으로써 프로세스 마이닝의 과정을 개선시킬 수 있다. 프로세스 클러스터링 시스템은 분석 요구에 따라 적절한 개수의 프로세스 로그로 군집화함으로써 사용자가 원하는 수준의 프로세스 모델들을 추출하도록 지원한다. 프로세스 마이닝 오픈 툴인 ProM 플랫폼을 바탕으로 하여 본 논문에 제시된 프로세스 클러스터링 기법을 적용하고 개발하였다.

  • PDF

해저열수광상 채광 로봇의 해저면 주행성능 시뮬레이션 (Driving Performance Simulation of Mining Robot for SMS deposits)

  • 이창호;김형우;홍섭;김성수
    • 한국해양공학회지
    • /
    • 제27권2호
    • /
    • pp.80-86
    • /
    • 2013
  • KIOST developed a deep-sea mining robot called "MineRo" to collect manganese nodules in 2007. MineRo operates on flat ground. SMS (seafloor massive sulfide) deposits are shaped like undulating mountains. This paper deals with a numerical analysis model of a mining robot for SMS deposits. The mining robot consists of a tracked vehicle, chassis structure with a turntable, boom arm with 2 articulations, excavation tool, discharging unit, hydro-electric system, and sensing-and-monitoring system. In order to compare and analyze the dynamic responses of the driving mechanism, various tracked vehicles are modeled using commercial software. Straight driving simulations are conducted under undulating ground conditions. A conceptual design of a mining robot with four track systems for SMS deposits is modeled on the basis of these results.

e-Business에서의 BI지원 데이타마이닝 시스템 (A Data Mining System for Supporting of Business Intelligence in e-Business)

  • 이준욱;백옥현;류근호
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제8권5호
    • /
    • pp.489-500
    • /
    • 2002
  • 비즈니스 인텔리젼스에 대한 관심이 증대되면서 핵심 기술로써 데이타마이닝의 적용이 증대되고 있다. e-Business에서의 비즈니스 인텔리젼스를 지원하기 위해 다양한 마이닝 연산을 통합적으로 제공하는 마이닝 시스템은 데이타베이스 시스템과 유연하게 통합될 수 있어야 하며, 또한 다양한 비즈니스 응용에서의 마케팅 프로세스를 쉽게 구현할 수 있는 인터페이스를 제공하여야 한다. 이 연구에서는 e-Business영역에서의 BI를 지원하기 위해 데이타마이닝 기법을 통합적으로 제공하는 시스템으로써 EC-DaMiner 시스템을 설계, 구현하였다. 데이타마이닝 시스템은 기존의 데이타베이스 시스템과의 표준적인 인터페이스를 통하여 연동될 수 있도록 하였다. 아울러 비즈니스 어플리케이션들은 마이닝 질의어인 MQL을 통하여 규칙을 탐사하고 탐사된 규칙을 기존의 마케팅 데이타베이스에 모델화하여 반영함으로써 마케팅 전략의 구현을 용이하게 하였다.