• Title/Summary/Keyword: mining

Search Result 6,756, Processing Time 0.029 seconds

From Multimedia Data Mining to Multimedia Big Data Mining

  • Constantin, Gradinaru Bogdanel;Mirela, Danubianu;Luminita, Barila Adina
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.381-389
    • /
    • 2022
  • With the collection of huge volumes of text, image, audio, video or combinations of these, in a word multimedia data, the need to explore them in order to discover possible new, unexpected and possibly valuable information for decision making was born. Starting from the already existing data mining, but not as its extension, multimedia mining appeared as a distinct field with increased complexity and many characteristic aspects. Later, the concept of big data was extended to multimedia, resulting in multimedia big data, which in turn attracted the multimedia big data mining process. This paper aims to survey multimedia data mining, starting from the general concept and following the transition from multimedia data mining to multimedia big data mining, through an up-to-date synthesis of works in the field, which is a novelty, from our best of knowledge.

Extraction of Expert Knowledge Based on Hybrid Data Mining Mechanism (하이브리드 데이터마이닝 메커니즘에 기반한 전문가 지식 추출)

  • Kim, Jin-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.764-770
    • /
    • 2004
  • This paper presents a hybrid data mining mechanism to extract expert knowledge from historical data and extend expert systems' reasoning capabilities by using fuzzy neural network (FNN)-based learning & rule extraction algorithm. Our hybrid data mining mechanism is based on association rule extraction mechanism, FNN learning and fuzzy rule extraction algorithm. Most of traditional data mining mechanisms are depended ()n association rule extraction algorithm. However, the basic association rule-based data mining systems has not the learning ability. Therefore, there is a problem to extend the knowledge base adaptively. In addition, sequential patterns of association rules can`t represent the complicate fuzzy logic in real-world. To resolve these problems, we suggest the hybrid data mining mechanism based on association rule-based data mining, FNN learning and fuzzy rule extraction algorithm. Our hybrid data mining mechanism is consisted of four phases. First, we use general association rule mining mechanism to develop an initial rule base. Then, in the second phase, we adopt the FNN learning algorithm to extract the hidden relationships or patterns embedded in the historical data. Third, after the learning of FNN, the fuzzy rule extraction algorithm will be used to extract the implicit knowledge from the FNN. Fourth, we will combine the association rules (initial rule base) and fuzzy rules. Implementation results show that the hybrid data mining mechanism can reflect both association rule-based knowledge extraction and FNN-based knowledge extension.

Establishment of the roof model and optimization of the working face length in top coal caving mining

  • Chang-Xiang Wang;Qing-Heng Gu;Meng Zhang;Cheng-Yang Jia;Bao-Liang Zhang;Jian-Hang Wang
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.427-440
    • /
    • 2024
  • This study concentrates on the 301 comprehensive caving working face, notable for its considerable mining height. The roof model is established by integrating prior geological data and the latest borehole rock stratum's physical and mechanical parameters. This comprehensive approach enables the determination of lithology, thickness, and mechanical properties of the roof within 50 m of the primary mining coal seam. Utilizing the transfer rock beam theory and incorporating mining pressure monitoring data, the study delves into the geometric parameters of the direct roof, basic roof movement, and roof pressure during the initial mining process of the 301 comprehensive caving working face. The direct roof of the mining working face is stratified into upper and lower sections. The lower direct roof consists of 6.0 m thick coarse sandstone, while the upper direct roof comprises 9.2 m coarse sandstone, 2.6 m sandy mudstone, and 2.8 m medium sandstone. The basic roof stratum, totaling 22.1 m in thickness, includes layers such as silty sand, medium sandstone, sandy mudstone, and coal. The first pressure step of the basic roof is 61.6 m, with theoretical research indicating a maximum roof pressure of 1.62 MPa during periodic pressure. Extensive simulations and analyses of roof subsidence and advanced abutment pressure under varying working face lengths. Optimal roof control effect is observed when the mining face length falls within the range of 140 m-155 m. This study holds significance as it optimizes the working face length in thick coal seams, enhancing safety and efficiency in coal mining operations.

Using Ontologies for Semantic Text Mining (시맨틱 텍스트 마이닝을 위한 온톨로지 활용 방안)

  • Yu, Eun-Ji;Kim, Jung-Chul;Lee, Choon-Youl;Kim, Nam-Gyu
    • The Journal of Information Systems
    • /
    • v.21 no.3
    • /
    • pp.137-161
    • /
    • 2012
  • The increasing interest in big data analysis using various data mining techniques indicates that many commercial data mining tools now need to be equipped with fundamental text analysis modules. The most essential prerequisite for accurate analysis of text documents is an understanding of the exact semantics of each term in a document. The main difficulties in understanding the exact semantics of terms are mainly attributable to homonym and synonym problems, which is a traditional problem in the natural language processing field. Some major text mining tools provide a thesaurus to solve these problems, but a thesaurus cannot be used to resolve complex synonym problems. Furthermore, the use of a thesaurus is irrelevant to the issue of homonym problems and hence cannot solve them. In this paper, we propose a semantic text mining methodology that uses ontologies to improve the quality of text mining results by resolving the semantic ambiguity caused by homonym and synonym problems. We evaluate the practical applicability of the proposed methodology by performing a classification analysis to predict customer churn using real transactional data and Q&A articles from the "S" online shopping mall in Korea. The experiments revealed that the prediction model produced by our proposed semantic text mining method outperformed the model produced by traditional text mining in terms of prediction accuracy such as the response, captured response, and lift.

Biomedical Ontologies and Text Mining for Biomedicine and Healthcare: A Survey

  • Yoo, Ill-Hoi;Song, Min
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.2
    • /
    • pp.109-136
    • /
    • 2008
  • In this survey paper, we discuss biomedical ontologies and major text mining techniques applied to biomedicine and healthcare. Biomedical ontologies such as UMLS are currently being adopted in text mining approaches because they provide domain knowledge for text mining approaches. In addition, biomedical ontologies enable us to resolve many linguistic problems when text mining approaches handle biomedical literature. As the first example of text mining, document clustering is surveyed. Because a document set is normally multiple topic, text mining approaches use document clustering as a preprocessing step to group similar documents. Additionally, document clustering is able to inform the biomedical literature searches required for the practice of evidence-based medicine. We introduce Swanson's UnDiscovered Public Knowledge (UDPK) model to generate biomedical hypotheses from biomedical literature such as MEDLINE by discovering novel connections among logically-related biomedical concepts. Another important area of text mining is document classification. Document classification is a valuable tool for biomedical tasks that involve large amounts of text. We survey well-known classification techniques in biomedicine. As the last example of text mining in biomedicine and healthcare, we survey information extraction. Information extraction is the process of scanning text for information relevant to some interest, including extracting entities, relations, and events. We also address techniques and issues of evaluating text mining applications in biomedicine and healthcare.

Fuzzy Web Usage Mining for User Modeling

  • Jang, Jae-Sung;Jun, Sung-Hae;Oh, Kyung-Whan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.204-209
    • /
    • 2002
  • The interest of data mining in artificial intelligence with fuzzy logic has been increased. Data mining is a process of extracting desirable knowledge and interesting pattern ken large data set. Because of expansion of WWW, web data is more and more huge. Besides mining web contents and web structures, another important task for web mining is web usage mining which mines web log data to discover user access pattern. The goal of web usage mining in this paper is to find interesting user pattern in the web with user feedback. It is very important to find user's characteristic fer e-business environment. In Customer Relationship Management, recommending product and sending e-mail to user by extracted users characteristics are needed. Using our method, we extract user profile from the result of web usage mining. In this research, we concentrate on finding association rules and verify validity of them. The proposed procedure can integrate fuzzy set concept and association rule. Fuzzy association rule uses given server log file and performs several preprocessing tasks. Extracted transaction files are used to find rules by fuzzy web usage mining. To verify the validity of user's feedback, the web log data from our laboratory web server.

Experimental investigation on multi-parameter classification predicting degradation model for rock failure using Bayesian method

  • Wang, Chunlai;Li, Changfeng;Chen, Zeng;Liao, Zefeng;Zhao, Guangming;Shi, Feng;Yu, Weijian
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.113-120
    • /
    • 2020
  • Rock damage is the main cause of accidents in underground engineering. It is difficult to predict rock damage accurately by using only one parameter. In this study, a rock failure prediction model was established by using stress, energy, and damage. The prediction level was divided into three levels according to the ratio of the damage threshold stress to the peak stress. A classification predicting model was established, including the stress, energy, damage and AE impact rate using Bayesian method. Results show that the model is good practicability and effectiveness in predicting the degree of rock failure. On the basis of this, a multi-parameter classification predicting deterioration model of rock failure was established. The results provide a new idea for classifying and predicting rockburst.

A Process Mining using Association Rule and Sequence Pattern (연관규칙과 순차패턴을 이용한 프로세스 마이닝)

  • Chung, So-Young;Kwon, Soo-Tae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.2
    • /
    • pp.104-111
    • /
    • 2008
  • A process mining is considered to support the discovery of business process for unstructured process model, and a process mining algorithm by using the associated rule and sequence pattern of data mining is developed to extract information about processes from event-log, and to discover process of alternative, concurrent and hidden activities. Some numerical examples are presented to show the effectiveness and efficiency of the algorithm.