The Journal of the Institute of Internet, Broadcasting and Communication
/
v.14
no.4
/
pp.233-241
/
2014
This paper suggests a fast minimum spanning tree algorithm which simplify the original graph to 2-edge connected graph, and using the cycling property. Borůvka algorithm firstly gets the partial spanning tree using cycle property for one-edge connected graph that selects the only one minimum weighted edge (e) per vertex (v). Additionally, that selects minimum weighted edge between partial spanning trees using cut property. Kruskal algorithm uses cut property for ascending ordered of all edges. Reverse-delete algorithm uses cycle property for descending ordered of all edges. Borůvka and Kruskal algorithms always perform |e| times for all edges. The proposed algorithm obtains 2-edge connected graph that selects 2 minimum weighted edges for each vertex firstly. Secondly, we use cycle property for 2-edges connected graph, and stop the algorithm until |e|=|v|-1 For actual 10 benchmark data, The proposed algorithm can be get the minimum spanning trees. Also, this algorithm reduces 60% of the trial number than Borůvka, Kruskal and Reverse-delete algorithms.
Cluster sensor network is a sensor network where input nodes crowd densely around some nuclei. Steiner minimum tree is a tree connecting all input nodes with introducing some additional nodes called Steiner points. This paper proposes a mechanism for efficient construction of a cluster sensor network connecting all sensor nodes and base stations using connections between nodes in each belonged cluster and between every cluster, and using repetitive constructions of approximate Steiner minimum trees. In experiments, while taking 1170.5% percentages more time to build cluster sensor network than the method of Euclidian minimum spanning tree, the proposed mechanism whose time complexity is O($N^2$) could spend only 20.3 percentages more time for building 0.1% added length network in comparison with the method of Euclidian minimum spanning tree. The mechanism could curtail the built trees' average length by maximum 3.7 percentages and by average 1.9 percentages, compared with the average length of trees built by Euclidian minimum spanning tree method.
Journal of the Korea Society of Computer and Information
/
v.19
no.1
/
pp.57-64
/
2014
As Steiner minimum tree building belongs to NP-Complete problem domain, heuristics for the problem ask for immense amount execution time and computations in numerous inputs. In this paper, we propose an efficient mechanism of euclidean Steiner minimum tree construction for numerous inputs using combination of Delaunay triangulation and Prim's minimum spanning tree algorithm. Trees built by proposed mechanism are compared respectively with the Prim's minimum spanning tree and minimums spanning tree based Steiner minimum tree. For 30,000 input nodes, Steiner minimum tree by proposed mechanism shows about 2.1% tree length less and 138.2% execution time more than minimum spanning tree, and does about 0.013% tree length less and 18.9% execution time less than minimum spanning tree based Steiner minimum tree in experimental results. Therefore the proposed mechanism can work moderately well to many useful applications where execution time is not critical but reduction of tree length is a key factor.
Let P be a set of n points in the plane. A minimum spanning tree(MST) is a spanning tree connecting n points of P such that the sum of lengths of edges of the tree is minimized. A diameter of a tree is the maximum length of paths connecting two points of a spanning tree of P. The problem considered in this paper is to compute the spanning tree whose diameter is minimized over all spanning trees of P. We call such tree a minimum-diameter spanning tree(MDST). The best known previous algorithm[3] finds MDST in $O(n^2)$ time. In this paper, we suggest an approximation algorithm to compute a spanning tree whose diameter is no more than 5/4 times that of MDST, running in O(n$^2$log$^2$n) time. This is the first approximation algorithm on the MDST problem.
This study deals with the DCMST (Delay constrained Capacitated Minimum Spanning Tree) problem applied in the topological design of local networks or finding several communication paths from root node. While the traditional CMST problem has only the traffic capacity constraint served by a port of root node, the DCMST problem has the additional mean delay constraint of network. The DCMST problem consists of finding a set of spanning trees to link end-nodes to the root node satisfying the traffic requirements at end-nodes and the required mean delay of network. The objective function of problem is to minimize the total link cost. This paper presents two-phased heuristic algorithm, which consists of node exchange, and node shift algorithm based on the trade-off criterions, and mean delay algorithm. Actual computational experience and performance analysis show that the proposed algorithm can produce better solution than the existing algorithm for the CMST problem to consider the mean delay constraint in terms of cost.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.47
no.5
/
pp.25-34
/
2010
By introducing additional nodes called Steiner points, the problem of Steiner Minimum Tree whose length can be shorter than Minimum Spanning Tree and which connects all input terminal nodes belongs to Non-Polynomial Complete domain. Though diverse heuristic methods can be applied to the problem, most of them may meet serious pains in computing and waiting for a solution of the problem with numerous input nodes. For numerous input nodes, an efficient PTAS approximation method producing candidate unit steiner trees with portals in most bottom layer, merging them hierarchically to construct their parent steiner trees in upper layer and building swiftly final approximation Steiner tree in most top layer is suggested in this paper. The experiment with 16,000 input nodes and designed 16 unit areas in most bottom layer shows 85.4% execution time improvement in serial processing and 98.9% in parallel processing comparing with pure Steiner heuristic method, though 0.24% overhead of tree length. Therefore, the suggested PTAS Steiner tree method can have a wide range applications to build a large scale approximation Steiner tree quickly.
Kim, Moon-Seong;Mutka, Matt W.;Hwang, Dae-Jun;Choo, Hyun-Seung
Journal of Communications and Networks
/
v.11
no.5
/
pp.500-508
/
2009
We have designed an algorithm for a problem in multicast communication. The problem is to construct a multicast tree while minimizing its cost, which is known to be NP-complete. Our algorithm, which employs new concepts defined as potential cost and spanning cost, generates a multicast tree more efficiently than the well-known heuristic called Takahashi and Matsuyama (TM) [1] in terms of tree cost. The time complexity of our algorithm is O($kn^2$) for an n-node network with k members in the multicast group and is comparable to the TM. Our empirical performance evaluation comparing the proposed algorithm with TM shows that the enhancement is up to 1.25%~4.23% for each best case.
The Journal of Korean Institute of Communications and Information Sciences
/
v.34
no.10B
/
pp.994-1003
/
2009
For Automatic Meter Reading System, good topology of check machines, concentrators, and repeaters in client field is important. Steiner Minimum Tree is a minimum cost tree connecting all given nodes with introducing Steiner points. In this paper, an efficient mechanism allocating and connecting check machines, concentrators and repeaters which are essential elements in automatic meter reading system is proposed, which conducts repeated applications of building approximate Minimum Steiner Trees. In the mechanism, input nodes and Steiner points might correspond to check machine, concentrators or repeaters and edges might do to the connections between them. Therefore, through suitable conversions and processes of them, an efficient network for automatic meter reading system with both wired and wireless communication techniques could be constructed. In our experiment, for 1000 input nodes and 200 max connections per node, the proposed mechanism shortened the length of produced network by 19.1% comparing with the length of Minimum Spanning Tree built by Prim's algorithm.
In this paper, we propose the Centroid-based Backbone Core Tree(CBCT) generation algorithm for the shared tree-based IP multicasting. The proposed algorithm is based on the Core Based Tree(CBT) protocol. Despite the advantages over the source-based trees in terms of scalability, the CBT protocol still has the following limitations; first, the optimal core router selection is very difficult, and second, the multicast traffic is concentrated near a core router. The Backbone Core Tree(BCT) protocol, as an extension of the CBT protocol has been proposed to overcome these limitations of the CBT Instead of selecting a specific core router for each multicast group, the BCT protocol forms a backbone network of candidate core routers which cooperate with one another to make multicast trees. However, the BCT protocol has not mentioned the way of selecting candidate core routers and how to connect them. The proposed CBCT generation algorithm employs the concepts of the minimum spanning tree and the centroid. For the performance evaluation of the proposed algorithm, we showed the performance comparison results for both of the CBT and CBCT protocols.
A way of quantitatively describing the tissue architecture we have investigated when developing a computer program for malignancy grading of transitional cell bladder carcinoma. The minimum spanning trees, MST was created by connecting the center points of the nuclei in the tissue section image. These nuclei were found by thresholding the image at an automatically determined threshold followed by a connected component labeling and a watershed algorithm for separation of overlapping nuclei. Clusters were defined in the MST by thresholding the edge lengths. For these clusters geometric and densitometric features were measures. These features were compared by multivariate statistical methods to the subjective grading by the pathologists and the resulting correspondence was 85% on a material of 40 samples.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.