Densitometric features of cell nuclei for grading bladder carcinoma
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Abstract

A way of quantitatively describing the tissue
architecture we have investigated when
developing a computer program for malignancy
grading of transitional cell bladder carcinoma.
The minimum spanning trees, MST was created
by connecting the center points of the nuclei in
the tissue section image. These nuclei were found
by thresholding the image at an automatically
determined threshold followed by a connected
component labeling and a watershed algorithm
for separation of overlapping nuclei. Clusters
were defined in the MST by thresholding the
edge lengths. For these clusters geometric and
densitometric features were measures. These
features were compared by multivariate statistical
methods to the subjective grading by the
pathologists and the resulting correspondence

was 85% on a material of 40 samples.

_ Introduction

Quantitative, computer assisted, analysis of
tomor tissues started in the late sixties. Using
computerized image analysis, many of features
that are qualitatively used by pathologists can
be quantitatively described. Additional features

are not readily apparent to the human eye such as

high order texture descriptors. Since much of the

information used to grade the tissue comes from
the relations between the cells, i.e. an assessment
of the order vs. disorder of the tissue organizatoin,
it is interesting to try to describe these relations.
Prewitt proposed to use graph analysis as
mathematical tools for this [11]. Since then
several other authors have followed up on the
idea and developed graph analysis algorithms for
tissue characterization [6,8,12]. In particular the
MST has proven useful. A few years ago we
started a project the aim of which was to develop
an  easy-to-use,  reproducible, objective,
computerized grading system for bladder tumors.
The reproducibility of subjective grading seems
to indicate considerable prognostic power [3}. In
the project we have previously studied parameters
obtained after segmentation of the cell nuclei [7],
as well as texture parameters [4]. Other groups
have presented similar results [10]. In the work
reported here we extend this work by
investigating the use of the MST to describe the

tissue architecture.

Material and Methods

Material and image acquisition

All patients with newly detected transitional cell
carcinoma for the urinary bladder seen at

Uppsala University Hospital during the period
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1975-1978, were studied retrospectively with an
observation time ranging from 5 to 9 years. Our
subjective grading divided the material into four
groups: grade 1, 2A, 2B and 3 . Grade 1 has a
slight papillary tendency (Fig. 1a). In grade 2A
the cellular pattern shows more variation in
nuclear size, shape, internuclear distance and
chromatine features (Fig. 1b). In grade 2B the
general impression of disorder dominates (Fig.
Ic). Grade 3 exhibits an extreme variation in
each of the features described (Fig. 1d).

A standard monochrome video CCD camera,
giving a data matrix of 512X410 pixels was used
on a microscope with an interference filter
centered at 550 nm and 40X lens, making the
size of the pixels about 0.5 pm. Digitized images
were obtained from 5 pm thick stained paraffin
wax sections. Pathologists chose a region of
interest from each section which best represented
the subjective grade. This image acquisition and
processing was carried out on an EPSILON

workstation using EGO software system [1].

Histogram based thresholding

The gray scale image was automatically
segmented into a binary image with objects
(nuclei) and background. The method global
thresholding, was based on the fact that cell
nuclei appear as dark objects on a lighter
background. A histogram of a typical image
showed a dominant distribution of light pixels,
the background, and a smaller distribution of
darker pixels, the objects. The two distributions
were separated by s weak valley or an inflection
point. We found the threshold by searching for

minima in the first derivative of the histogram.
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Watershed segmentation

The result binary image showed the nuclei but
also maﬁy other spurious objects, holes, as well
as touching and overlapping nuclei. The object
masks were first cleaned filling the holes of the
objects, defined as having an area less than 70
pixels or a maximum width less than 9 pixels,
were detected. The width was obtained by a
chamfer 3-4 distance transformation [2]. The
distance transform image (Fig. 2a) was also used |
as a starting point for separating touching objects.
The watershed segmentation algorithm [13] can
separate irregular blobs into more regular parts.
We empirically determined that a waistline
between blobs with a width of less than 90% of
the smallest side blob should result in a cut. For
this cut the watershed line was replaced with the

shortest straight line, see Fig. 2b.

Minimum spanning tree

A minimum spanning tree (MST) connecting the
centroids of all nuclei in a tissue section can be
used as a basis for extracting features describing
the tissue architecture. We first created a linear
graph connecting the centre points of adjacents.
The edges were assigned the Euclidean distance
between the corresponding vertices as weights.
This graph was then reduced to a MST using
Kruskal’s algorithm [9]. In Kruskal’s algorithm,
edges are first sorted in ascending order of
weight and placed in a list structure. This
algorithm was implemented here using a
heapsorted priority queue. As the list is traversed,
if an edge is found connecting a vertex that has

not been visited before, the edge is included in
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the tree. When an edge connects two vertices
belonging to different clusters, the two clusters
are merged, with the new cluster being absorbed
into the older clusters. The tree will complete
when only one cluster remains i.e. when all the
vertices have been visited. For N vertices, the
complete tree will have (N-1) edges. The
obtained tree will be the MST i.e. the graph
whose weightsum is minimum among all
spanning tree graphs. A practical example is

shown in Fig. 2c.

Clustering

In the MST the vertices (nuclei) were clustered
based on cutting links longer than a threshold
value. Reasonable value for this threshold were
obtained by studying the image geometry. Two
slightly overlapping nuclei would have an edge
distance of about 6 um and a distance of more
than 19 um is rather unusual. Several distance in
this range were used as possible thresholds for
creating clusters. The threshold which yielded
features with the best discriminating power was
finally used. Fig. 2d. depicts the clusters of

segmented nuclei.

Feature extraction

We defined 24 different features. The best of
these as determined by their discriminatory
power were: The degree of nuclear overlap
defined as the number of edges shorter than 6 um
divided by the total number of nuclet (F1), the
variation of local orientation of the graph defined
as the standard deviation of the direction indices
in a 2X2 (F2) or 3X3 (F3)

neighborhood, the nuclear area to graph size

measured

ratio defined as the sum of all nuclear areas
divided by the total graph size (F4), the
normalized number of clusters defined as the
number of clusters divided by the total graph size
(F5), the variation in average nuclear size
defined as the standard deviation of the average
nuclear areas in each cluster, taken over all
clusters (F6) and similarly the standard deviation
for the average gray values of the nuclei (F7), the
variation in inter cluster distance as the standard
deviation of the distance between the clusters
(F8) and finally the cluster area variation defined
as the standard deviation of total nuclear area per
cluster over all clusters (F9). These features
achieved discriminating powers for the different

classification phases as shown in Table 1.

Hierarchical classification

A two stage binary hierarchical classifier using
multivariate linear discriminant analysis at each
stage was developed. For each stage we applied a
step-wise linear discriminant analysis, using the
BMDP ([5] program package. The optimized
criteria are the ratio between the within group
and between group distance . using the
Mahalanobis distance. For each phase in the
hierarchical classification the program found the
features and the

optimal combination for

corresponding weights in the discriminant
function. The discrimination between grades (1 +
2A) and (2B + 3) used clusters with less than
16pm distance (Phase I) while the threshold 7
um and 4.5 pm were used for grade 1 and 2A
(Phase II:1) and grade 2B and 3 (Phase IL:2)

respectively.
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Result and Discussion
The classifier was trained on a randomly selected
subset of 20 out of the 40 images and then tested

on all 40 images, 10 images of each grade. The

e

classifier was able to correctly classified 34/40

images (85 % agreement) see Table 2. The
method thus showed good correlation with
subjective visual grading. This at least indicates
that there is some useful information available in
these features. These preliminary results need to
be verified on a larger test set before we finally
can know if these methods can be used as part of
such a system. Computing the MST is a
computationally demanding task. We used
Kruskal’s algorithm with s time complexity of
O(n log n), where e is the number of edges in the

graph.
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Fig. 1. The digital microscopic images (40X) of
the bladder carcinoma cells stained by Feulgen.
In each grade the region of interest was chosen
by pathologists: (a) Grade 1(upper left ), (b)
Grade 2A(upper right), (¢) Grade 2B(lower left)
and (d) Grade 3(lower right).

Fig. 2. The grade 2A image of Fig. 1b. (a) Upper
chamber  4-3

left, using a distance
transformation . (b) Upper right, the overlapping
nuclei separated by a watershed algorithm. (c)
Lower left, the minimum spanning tree of a
tissue section with 153 vertices superimposed on
the gray scale image. (d) Lower right, a
thresholded at 16 um has been used as the

Euclidean distance between vertices to create the

31 clusters.

Table 2. Confusion matrix for the minimum
spanning tree based hierarchical classifier tested
on 40 images. The kappa value was 0.80 and the
t-value was 8.83. Visual grade horizontally,

computer grade vertically.

Grade Grade 1 _|Grade 2A |Grade 2B {Grade 3 |%

1(10) 8 2 0 ¢] 80
2A (10) 0 9 1 0) 90
2B (10) 0 1 9 0 90,
3110} 0 1 1 8 80
Total (40) 8 13 11 8 85

—361—



19969 = FAF<dsyg =23 H183 A2z 96/11

Table 1. The following features were selected for each of the three classification stages and training
phase using 20 randomly selected images. The corresponding means, standard deviations, variation

ranges and the F-values for each of the groups are given.

Features |Mean Istd Min Max Mean Istd Min Max F—dist
Phase Grade 1, 2A Grade 2B, 3

F3 14.54 2.31 10.33 18.54 10.95 4.51 2.25 17.1 7.77
F4 11.43 1.94 8.66 14.52 14.93 215 12.64 19.17 12.81
Fé 61.59 38.23 0 105.76 240.95 128.49 83.99 459.75 5.76
Phase ll:1|Grade 1 Grade 2A

F1 0.012 0.01 0 0.025 0.007 0.008 0 0.02 34.11
F3 15.07 2.5 12.1 18.54 14.01 2.26 10.33 16.49 8.35
F5 0.042 0.004 0.034 0.045 0.042 0.004 0.037 0.047 15.76
F7 14636 2357 11409 16675 16983 4572 10596 22742 44.09
F9 97.77 9.38 86.25 107.91 126.98 26.98 83.52 153.75 92.69
Phase {1:2]Grade 2B Grade 3

E2 13.63 3.74 8.12 17.66 10.48 4.51 3.92 16.37 4.43
Fa 15.98 2.23 14.07 19.17 13.87 1.63 12.64 16.24 9.41
F6 180.2 39.28 150.7 246.5 224.3 70.44 165.3 325.8 7.64
F8 0.445 0.093 0.354 0.598 0.513 0.186 0.298 0.782 6.25
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