• Title/Summary/Keyword: minimum required pressure

Search Result 92, Processing Time 0.029 seconds

Experimental Research on the Performance of Air Turbine Starter for Gas Turbine Engines (가스터빈 엔진용 공기터빈 시동기 성능에 관한 실험적 연구)

  • Kim, Chun-Taek;Yang, In-Young;Cha, Bong-Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.27-32
    • /
    • 2012
  • Gas turbines for an aircraft have the start and restart capabilities within their flight envelop. It is an important item for engine qualification and substantiated with the test. Experimental investigations were carried out to find the relation between the corrected torque and the corrected rotating speed of an air turbine starter in this study. A dedicated air supply system for the air turbine starter and a special device to measure the torque and the rotating speed of the air turbine starter were developed and installed at the altitude engine test facility in Korea Aerospace Research Institute. Experimental results show that the relations between the corrected torque and the corrected rotating speed of the air turbine starter are linear and the inlet temperature and pressure conditions for the air turbine starter were found out to provide minimum required torque for the engine qualification test at various altitude. The start and restart tests for the currently developing engine were successfully performed using this experimental results.

Study on the Minimization of Shape Parameters by Reverse Design of an Axial Turbine Blade (축류형 터빈 익형의 역설계에 의한 최소 형상변수에 관한 연구)

  • Cho, Soo-Yong;Oh, Koon-Sup;Yoon, Eui-Soo;Choi, Bum-Seog
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.4 s.9
    • /
    • pp.30-37
    • /
    • 2000
  • Several reverse design methods are developed and applied to the suction or pressure surface for finding design values of blade geometry for a given axial turbine blade. Re-designed blade profiles using shape parameters are compared with measured blade data. Essential shape parameters for blade design are induced by the procedure of reverse design for best fitting. Characteristics of shape parameters are evaluated through the system design method and restriction conditions of structural stability or aerodynamic flow loss. Some of shape parameters i.e blade radius or exit blade angle etc., are classified to weakly adjustable shape parameters, otherwise strongly adjustable shape parameters which would be applied for controlling blade shape. Average deviation values between the measured data and re-designed blade using shape parameters are calculated for each design method. Comparing with the average deviation for a given blade geometry, minimum shape parameters required to design a blade geometry are obtained.

  • PDF

Performance Characteristics of Refrigeration and Air Conditioning System Using Hydrocarbon Refrigerants (탄화수소계 냉동공조 시스템의 성능특성에 관한 실험)

  • 이호생;이근태;김재돌;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.728-734
    • /
    • 2004
  • Environmentally friendly refrigerants with zero ozone layer depletion potential are required to be used in refrigerators and air conditioners due to the difficulties related to ozone layer depletion and global warming. A rigorous study for the system performance with new refrigerants having zero ozone layer depletion potential is inevitable before adopting that as a new fluid. The HFC(Hydrofluorocarbon) potential has been recommended as alternatives. In this paper. system performance in the heat pump facilities were studied using R-290, R-600a. R-1270 as an environment friendly refrigerant. R-22 as a HCFC's refrigerant. The experimental apparatus has been set-up as a conventional vapor compression type heat Pump system. The test section is a horizontal double pipe heat exchanger. A tube diameter of 12.70mm with 1.315mm wall thickness is used for this investigation. The test results showed that the COP of hydrocarbon refrigerants were superior to that of R-22 and the maximum increasing rate of COP was found in R-1270. The refrigeration capacity of hydrocarbon refrigerants were higher than that of R-22. The compressor work was obtained with the maximum value in R-1270 and the minimum one in R-22.

Labyrinth Seal Design for Preventing Internal Inflow of Plating Solution (도금액의 내부 유입 방지를 위한 래버린스 시일 설계)

  • Lee, Duck-Gyu;Kim, Wan-Doo
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.256-262
    • /
    • 2017
  • Molten zinc plating is a process in which zinc is thinly coated over a metallic or non-metallic surface. It is used in various industrial fields for corrosion resistance and decoration. During the process, a steel sheet is passed through a roll that rotates inside the molten zinc liquid in the temperature range of $460^{\circ}C$ to $680^{\circ}C$, and the plating liquid flows into the roll causing abrasion and erosion of the roll surface. This problem is known to accelerate the replacement cycle of the roll and cause considerable economic loss owing to production line stoppage. Here, we propose a mechanism that operates at high temperature and pressure with a labyrinth type seal design to resolve this problem. We theoretically investigate the flow of the plating solution inside the seal and compute the minimum rotation speed required to prevent the plating solution from entering the seal chamber. In addition, we calculate the thermal deformation of the seal during operation and display thermally deformed dimensions at high temperatures. To verify the theoretical results, we perform experiments using pilot test equipment working in the actual plating environment. The experimental results are in good agreement with theoretical results. We expect our results to contribute towards the extension of the roll's life span and thereby reduce the economic losses.

A STUDY ON IMPLEMENTATION OF OUTWARD AGING AND HEALTH-STATE MONITORING SYSTEM BASED ON IMAGE PROCESSING (영상처리에 기반한 노인 대상 외양적 노화 및 건강 상태 모니터링 시스템에 관한 연구)

  • Hwang, Kun-Su;Kil, Se-Kee;Shen, Dong-Fan;Min, Hong-Ki;Lee, Eung-Hyuk;Hong, Seung-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.881-882
    • /
    • 2006
  • According as society looks graying trend gradually, more shaped system that can achieve measuring health-state of old people more harmoniously construction required in field of old people's welfare and medical treatment. Health-state is measured by two methods of contact and non-contact. The first, for example measurement of blood pressure or electrocardiogram, requires that measuring equipments are attached on human body but the second, for example X-Ray or MRI, is not. But both of methods are have some of defect, for example attaching equipments, needing of the special equipments or the necessary time, etc. Therefore desirable method of monitoring system must have minimum interrupt about daily life. This study suggest the system that can monitor the user, especially old people's outward aging and health-state by use the PAN TILTER and CCD camera.

  • PDF

Compression Molding Analysis of LFT-D System for Vehicle Trailing Arm (트레일링 암 생산용 LFT-D 시스템에서의 압축성형 해석)

  • Park, Bo-Gyu;Jung, Jin Woo;Jung, Han-Kyu;Park, Si-Woo;Ha, Dong Soo;Choi, Hyen Yel
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.133-138
    • /
    • 2017
  • Recently, CFRP composites are widely used as lightweight materials have with excellent mechanical properties and can beare widely used in various fields. In general, thermosetting resins are used for CFRP. However, in recent years, studies have been carried out using thermoplastic resins have been actively carried out to overcome the disadvantages of thermosetting resins. The LFT-D system is a molding method in which a fiber is directly cut to a the desired length while being impregnated with a thermoplastic resin to produce a compound and that is then press-molding molded to form the product. In this paper, before the production of the trailing arm, the compression molding analysis was carried out in order to grasp the problems that may occur during production. Through cCompression molding analysis was applied to calculate of the minimum press pressure and to compare and analysis analyze the molding conditions characteristic required to formfor forming the trailing arm.

Computational Study on the Soot Blowing Method for Enhancing the Performance of the SCR System (SCR 시스템의 효율적인 운영을 위한 Soot Blowing 방법에 대한 해석적 연구)

  • Seo, MoonHyeok;Chang, HyukSang
    • Particle and aerosol research
    • /
    • v.8 no.3
    • /
    • pp.99-110
    • /
    • 2012
  • In the SCR (selective catalytic reduction) system which is used for controlling the NOx emission from the Diesel engines, the soot deposited on the catalysis causes degradation of the system performance. Numerical study was done to evaluate the performance of soot blower which is proposed as a method for removing the soot on the catalysis. The spray conditions and the effect of the compressed air from the AIG (air inlet gun) were analyzed numerically to evaluate the overall effective method of the soot blowing. The characteristics of the final velocity distribution and velocity waves across the inlet section of the catalysis were evaluated with respect to the geometries of the AIG outlets and pressure conditions. An experimental model was used to validate the results of the numerical calculation that is used for finding the effective removal blowing momentum transfer quantities of soot the inlet section of the catalysis, and it is proposed that the required minimum blowing momentum transfer quantities are over than 0.499 $kg/m{\bullet}t_{eff}$ in the current study.

A Study on Safety Assessment of Hydrogen Station (수소충전소의 안전성 평가 연구)

  • PYO, DON-YOUNG;KIM, YANG-HWA;LIM, OCK-TAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.499-504
    • /
    • 2019
  • Due to the rapid spread and low minimum ignition energy of hydrogen, rupture is highly likely to cause fire, explosion and major accidents. The self-ignition of high-pressure hydrogen is highly likely to ignite immediately when it leaks from an open space, resulting in jet fire. Results of the diffusion and leakage simulation show that jet effect occurs from the leakage source to a certain distance. And at the end of location, the vapor cloud explosion can be occurred due to the formation of hydrogen vapor clouds by built-up. In the result, it is important that depending on the time of ignition, a jet fire or a vapor cloud explosion may occur. Therefore, it is necessary to take into account jet effect by location of leakage source and establish a damage minimizing plan for the possible jet fire or vapor cloud explosion. And it is required to any kind of measurements such as an interlock system to prevent hydrogen leakage or minimize the amount of leakage when detecting leakage of gas.

Experimental investigation of jet pump performance used for high flow amplification in nuclear applications

  • Vimal Kotak;Anil Pathrose;Samiran Sengupta;Sugilal Gopalkrishnan;Sujay Bhattacharya
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3549-3558
    • /
    • 2023
  • The jet pump can be used in a test device of a nuclear reactor for high flow amplification as it reduces inlet flow requirement and thereby size of the process components. In the present work, a miniature jet pump was designed to meet high flow amplification greater than 3. Subsequently, experiments were carried out using a test setup for design validation and performance evaluation of the jet pump for different parameters. It was observed that a minimum pressure of 0.6 bar (g) was required for the secondary fluid inside the jet pump to ensure cavitation free performance at high amplification. Spacing between the nozzle tip and the mixing chamber entry point had significant effect on the performance of the jet pump. Variation in primary flow, temperature and area ratio also affected the performance. It was observed that at high flow amplification, the analytical solution differed significantly from experimental results due to very large velocities encountered in the miniature size jet pump.

Mechanical and Operational Factors Affecting the Efficiency of Rice Polishing Machines (정미기의 능률에 미치는 기계적 요인및 작동조건에 관한 연구)

  • No, Sang-Ha
    • Journal of Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.15-15
    • /
    • 1976
  • In analyzing the operational characteristics of a rice whitening machine, the internal radial pressure of the machine was measured using strain gage equipment. Changes in cylinder and feed screw configurations, screen type, cylinder speed and counter-pressure levels were examined to determine their impact on the quality and quantity of milled rice and the performance of the machine. The results are summarized as follows: 1. The internal radial pressure in the whitening chamber varied with the surface condition of the grain being processed. During the first or second pass through the machine, pressure was relatively low, reached a maximum after two to three passes with combinations I and II, three to six with combination III and then began to fall. 2. The pitch of the feed screw and the size of the feed gate opening which determine the rate of entry of grain into the whitening chamber, appeared to be the most important factor aff-::cting the degree of radial pressure, quality and quantity of milled rice and the efficiency of the machine. Using a feed screw with a wide pitch (4.8cm), radial pressure was relatively high and head rice recovery ratio \vere quite low. In this case capacity and machine effic?iency were much higher than obtained when using a feed screw with a narrow pitch (2.3cm). Very significant responses in radial pressure, head rice recovery rates and machine capacity were observed with changes in cylinder speed and counter-pressure levels when using the wide pitch feed screw. 3. The characteristics of the screen which surrounds the whitening chamber had an important effect on whitening efficiency. The existence of small protuberances on the original screen resulted in significant increases in both machine capacity and efficiency but without a significant decrease in head rice recovery or development of excessive radial pressure. Further work is required to determine the effects of screen surface conditions and the shape of the cylinderical steel roller on the rate of bran removal, machine efficiency and recovery rates. The size of the slotted perforations 0:1 the screen affects total milled rice recovery. The opening size on the original screen was fabricated to accommodate the round shape of Japonica rice varieties but was not suitable for the more slender Indica type. Milling Indica varieties with this screen resulted in a reduction in total milled rice recovery. 4. An increase in cylinder speed from 380 to 820 rpm produced a positive effect on head rice recovery for all machine combinations at every level of counter-pressure used in the tests. Head rice recovery was considerably lower at 380rpm using a wide screw pitch when compared to the results obtained at speeds from 600 to 820 r.p.m. The effects of cylinder speed On radial pressure, capacity and machine efficiency showed contrasting results, depending on the width of the feed screw pitch. With a narrow feed screw pitch (2.3cm), a direct proportional relationship was observed bet?ween cylinder speed and both radial pressure and machine efficiency. In contrast, using a 4.8 centimeter pitch feed roller produced a series of inverse relationships between the above variables. Based on the results of this study it is recommended when milling Indica type long grain rice varieties that the cylinder speed of the original machine be increased from 500-600 rmp up to a minimum of 800 rpm to obtain a greater abrasive effect between the grain and the screen. The pitch of the feed screw should be also reduced to decr?ease the level of internal radial pressure and to obtain higher machine efficiency and increased quality of milled rice with increased cylinder speeds. Further study on the interaction between cylinder speed and feed screw pitch is recommended. 5. An increase in the counter pressure level produced a negative effect On the head rice recovery with an increase in radial pressure, capacity, and machine efficiency over all combinations and at every level of cylinder speed. 6. Head rice recovery rates were conditioned primarily by the pressure inside the whitening chamber. According to the empirical cha racteristics curve developed in this study, the relationships of head rice recovery ($Y_h$) and machine capacity ($Y_c$/TEX>) to internal radial pressure ($X_p$) followed an inverse quadratic function and a linear function respectively: $$Y_h^\Delta=\frac{1}{{1.4383-0.2951X_p^\ast+0.1425X_p^{\ast\ast}}^2} , (R^2=0.98)$$$$Y_c^\Delta=-305.83+374.37X_p^{\ast\ast}, (R^2=0.88)$$The correlation between capacity and power consumption per unit of brown rice expressed in the following exponential function: $$Y_c^\Delta=1.63Y_c^{-0.7786^\{\ast\ast}, (R^2=0.94)$$These relationships indicate that when radial pressure increases above a certain range (1. 6 to 2.0 kg/$cm^2$ based On the results of the experiment) head ricerecovery decrea?ses in a quadratic relation with a inear increase in capacity but without any decrease in power consump tion per unit of brown rice. On the other hand, if radial pressure is below the range shown above, power consumption increases dramatically with a lin?ear decrease in capacity but without significant increases in head rice recovery. During the operation of a given whitening machine, the optimum radial pressure range or the correct capacity range should be selected by controlling the feed rate and/or counter-pressure keeping in mind the condition of the grain, particulary the hardness. It was observed that the total number of passes is related to radial pessure level, feed rate and counter-pressure level. The higher theradial pressure the fewer num?ber of pass required but with decreased head rice recovery. In particular, when using high feed rates, the total number of passes should be increased to more than three by reducing the counter-pressure level to avoid decreaseases in head rice recovery (less than 65 percent head rice recovery on the basis of brown rice) at every cylinder speed. 7. A rapid rise in grain temperature seemed to have a close relationship with the pressure generated inside the whitening chamber and, subsequently with head rice reco?very rates. The higher the rate of increase, the lower were the resulting head rice recoveries.