Minimum $L_i$ norm estimation is a robust procedure ins the sense that it leads to an estimator which has greater statistical eficiency than the least squares estimator in the presence of outliers. And the $L_1$ norm estimator has some desirable statistical properties. In this paper a new computational procedure for $L_1$ norm estimation is proposed which combines the idea of reweighted least squares method and the linear programming approach. A modification of the projective transformation method is employed to solve the linear programming problem instead of the simplex method. It is proved that the proposed algorithm terminates in a finite number of iterations.
This paper proposes balanced model reduction of non-minimum phase plant. The algorithm presented in this paper is to convert high-order non-minimum phase plant into low-oder minimum phase plant using balanced model reduction. Balanced model reduction requires the error bound that Hankel singular value produces. This algorithm shows the tolerance that admits the method of this paper.
To solve a class of nonlinear parameter estimation problems, a method combining the regularized structured nonlinear total least norm (RSNTLN) method and parameter separation scheme is suggested. The method guarantees the convergence of parameters and has an advantages in reducing the residual norm over the use of RSNTLN only. Numerical experiments for two models appeared in signal processing show that the suggested method is more effective in obtaining solution and parameter with minimum residual norm.
Deconvolution is one of the most used techniques for processing seismic reflection data. It is applied to improve temporal resolution by wavelet shaping and removal of short period reverberations. Several deconvolution algorithms such as predicted, spike, minimum entropy deconvolution and so on has been proposed to obtain such above purposes. Among of them, $\iota_1$ norm proposed by Taylor et al., (1979) and used to compared to minimum entropy deconvolution by Sacchi et al., (1994) has given some advantages on time computing and high efficiency. Theoritically, the deconvolution can be considered as inversion technique to invert the single seismic trace to the reflectivity, but it has not been successfully adopted due to noisy signals of the real data set and unknown source wavelet. After stacking, the seismic traces are moved to zero offset, thus each seismic traces now can be a single trace that is created by convolving the seismic source wavelet and reflectivity. In this paper, the fundamental of $\iota_1$ norm deconvolution method will be introduced. The method will be tested by synthetic data and applied to improve the stacked section of gas hydrate.
There are three standard weight functions on a linear code viz. Hamming weight, Lee weight, and Euclidean weight. Euclidean weight function is useful in connection with the lattice constructions [2] where the minimum norm of vectors in the lattice is related to the minimum Euclidean weight of the code. In this paper, we obtain an upper bound over the number of parity check digits for Euclidean weight codes detecting and correcting burst errors.
In this paper, we present a novel and numerically efficient algorithm for high resolution TOA(Time Of Arrival) estimation under indoor radio propagation channels. The proposed algorithm is not dependent on the structure of receivers, i.e, it can be used with either coherent or non-coherent receivers. The TOA estimation algorithm is based on a high resolution frequency estimation algorithm of Minimum-norm. The efficiency of the proposed algorithm relies on numerical analysis techniques in computing signal or noise subspaces. The algorithm is based on the two step procedures, one for transforming input data to frequency domain data and the other for estimating the unknown TOA using the proposed efficient algorithm. The efficiency in number of operations over other algorithms is presented. The performance of the proposed algorithm is investigated by means of computer simulations.. Throughout the analytic and computer simulation results, we show that the proposed algorithm exhibits superior performance in estimating TOA estimation with limited computational cost.
When applying a SQUID system for diagnosing heart disease, it is informative to obtain the source current distributions from the measured MCG (magnetocardiogram) signals since the bioelectric activity in the heart is generally represented by distributed current sources. In order to estimate the Primary current distribution in a heart, the minimum norm estimate was computed, assuming a source plane below the chest surface. In the simulation, current distributions, which were computed for the test dipoles represented well the essential feature of the test-current configurations. Source current reconstruction was performed for MCG signal of a healthy volunteer, which was recorded using a 40-channel SQUID system in a magnetically shielded room. It was found that the obtained current distribution is consistent with the electrical activity in a heart.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권7호
/
pp.3194-3216
/
2018
Slow Feature Discriminant Analysis (SFDA) is a supervised feature extraction method inspired by biological mechanism. In this paper, a novel method called Two Dimensional Slow Feature Discriminant Analysis via $L_{2,1}$ norm minimization ($2DSFDA-L_{2,1}$) is proposed. $2DSFDA-L_{2,1}$ integrates $L_{2,1}$ norm regularization and 2D statically uncorrelated constraint to extract discriminant feature. First, $L_{2,1}$ norm regularization can promote the projection matrix row-sparsity, which makes the feature selection and subspace learning simultaneously. Second, uncorrelated features of minimum redundancy are effective for classification. We define 2D statistically uncorrelated model that each row (or column) are independent. Third, we provide a feasible solution by transforming the proposed $L_{2,1}$ nonlinear model into a linear regression type. Additionally, $2DSFDA-L_{2,1}$ is extended to a bilateral projection version called $BSFDA-L_{2,1}$. The advantage of $BSFDA-L_{2,1}$ is that an image can be represented with much less coefficients. Experimental results on three face databases demonstrate that the proposed $2DSFDA-L_{2,1}/BSFDA-L_{2,1}$ can obtain competitive performance.
헬리콥터를 이용한 항공자력탐사는 정해진 고도를 따라 지표면에 평행하게 이루어지지만, 고해상도 탐사에서는 특히 측정이 이루어지는 고도가 너무 변화하여 평탄면으로 간주할 수 없는 경우가 있다. 이 연구에서는 모서리 효과를 조절할 수 있도록 주변 자력원이 포함되는 등가원 방법을 이용하여 이러한 자료를 변환하는 방법을 개발하였고, 3차원적으로 무작위하게 분포하는 점의 자료를 직접적으로 모델화하였다. 이 문제는 일반적으로 under-determined 이지만 CG 법은 최소 norm 해를 찾을 수 있으며, 자력이상을 자력원과 연관시키는 조화함수를 선택할 자유가 있는데, 상향연속 함수 연산자가 선택되면 등가원 자체가 자력이상이 된다. 기본자기장의 방향으로의 자기 쌍극자분포를 자력원으로 선택하면, 자기 쌍극자의 방향을 수직으로 돌려줌으로써 쉽게 자극화 변환 이상을 유도할 수 있다.
MWNI (Minimum Weighted Norm Interpolation)를 이용한 내삽 방법은 고차원으로 확장이 용이하고 상대적으로 계산 속도가 빠르다는 장점을 가지고 있으나 알리아스 효과가 존재하는 자료의 내삽에 취약하다. 이런 문제의 개선을 위해 제안된 방법이 모델제약(model-constrained) MWNI이다. 이 논문에서는 MWNI를 이용한 방법과 모델제약 MWNI 방법의 두가지 모듈을 개발한 후 알리아스 효과가 존재하는 자료의 내삽 결과를 비교하였다. 시공간 영역(t-x domain)과 주파수-파수 영역(f-k domain)의 결과 그림을 통해서 모델제약 MWNI를 적용했을 때의 결과가 더 효과적임을 확인할 수 있었다. 동해 울릉분지의 가스 하이드레이트 부존 지역의 현장 자료에 내삽을 적용한 결과, 가스침니 구간 전후로 진폭이 급격하게 변하는 자료에서도 내삽이 가능함을 확인할 수 있었다. 또한 매우 불규칙하고 넓은 구간에서 누락된 인공지진파 자료의 정규화를 통해 신호의 연결성 향상이 가능함을 보일 수 있었다. 결과적으로 이 논문에서 개발된 모듈은 현장의 다양한 여건에 의해 불규칙하거나 넓은 간격으로 얻어진 탄성파 자료의 정규화나 내삽에 효율적으로 활용될 수 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.