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AN UPPER BOUND ON THE NUMBER OF PARITY
CHECKS FOR BURST ERROR DETECTION AND

CORRECTION IN EUCLIDEAN CODES

Sapna Jain and Ki-Suk Lee

Abstract. There are three standard weight functions on a linear code
viz. Hamming weight, Lee weight, and Euclidean weight. Euclidean
weight function is useful in connection with the lattice constructions [2]
where the minimum norm of vectors in the lattice is related to the min-
imum Euclidean weight of the code. In this paper, we obtain an upper
bound over the number of parity check digits for Euclidean weight codes
detecting and correcting burst errors.

1. Introduction

There are three standard weight functions (or equivalently distance/metric
functions) on a linear code viz. Hamming weight [1, 4, 14], Lee weight [7, 10,
11, 12, 13] and Euclidean weight [2, 6]. The choice of a metric for a given
communication system plays an important role as the channel model should
match the metric d to be employed for developing a suitable code, and hence
for a communication system to operate reliably. Thus given a modulation
scheme, one metric may be better suited than another. Euclidean weight (or
Euclidean square distance) is useful in connection with the latice construction
where the minimum norm of vectors in the lattice is related to the minimum
Euclidean weight of the code [2]. Also, it is well known that during the process
of transmission errors occur predominantly in the from of bursts. However,
it does not generally happen that all the digits inside any burst length gets
corrupted. In other words, the weight of the burst errors are not large. Codes
developed to detect and correct burst errors with respect to Hamming and Lee
weight functions have been studied by many authors [3, 5, 10, 12] and [15]. In
this paper, we first obtain an upper bound for Euclidean codes detecting burst
errors and then we obtain an upper bound for codes correcting such type of
errors.

In what follows, we consider the following:
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Let Zq be the ring of integers modulo q. Let V n
q be the set of all n-(tuples)

over Zq. Then V n
q is a module over Zq. Let V be a submodule of the module

V n
q over Zq. For q prime, Zq becomes a field and correspondingly V n

q and V
become the vector space and subspace respectively over the field Zq. Also, we
define the Euclidean value |a|2 of an element a ∈ Zq by

|a|2 =
{

a2 if 0 ≤ a ≤ q/2,
(q − a)2 if q/2 < a ≤ q − 1,

or in other words
|a|2 = min(a2, (q − a)2),

then, for a given vector u = (a0, a1, . . . , an−1), ai ∈ Zq, the Euclidean weight
wE(u) of u is given by

wE(u) =
n−1∑

i=0

|ai|2.

Note that in determining the Euclidean weight of vector, a nonzero entry a
has a contribution |a|2 which is obtained by two different entries a and q − a
provided {q is odd } or {q is even and a 6= q/2}. That is,

|a|2 = |q − a|2 if





q is odd
or

q is even and a 6= q/2.

If q is even and a = q/2 or if a = 0, then |a|2 is obtained in only one way viz.
|a|2 = a2.

Thus for the Euclidean weight, there may be one or two entries from Zq

having the same Euclidean value |a|2 and we call these entries as repetitive
equivalent Euclidean values of a. The number of repetitive equivalent Euclidean
values of a will be denoted by ea, where

ea =
{

1 if { q is even and a = q/2} or {a = 0}
2 if { q is odd and a 6= 0} or {q is even, a 6= 0 and a 6= q/2}.

The Euclidean square distance between the two vectors u=(a0, a1, . . . , an−1)
and v = (b0, b1, . . . , bn−1) is defined as the Euclidean weight of their difference,
i.e.,

d2
E(u, v) = wE(u− v).

The minimum Euclidean square distance of a code is the smallest Euclidean
square distance between all its distinct pair of code words. Also, minimum
Euclidean square distance (d2

E) and minimum Euclidean weight of a code co-
incide.

We note that Euclidean weight (or equivalent Euclidean square distance) of
a vector over Zq can assume values which can be expressed as sum of squares of
positive integers and the integers are chosen from the set {0, 1, 2, 3, . . . , [q/2]}.

We shall denote [x] as the largest integer less than or equal to x.
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2. An upper bound for Euclidean weight codes detecting burst
errors

In this section, we obtain an upper bound on the number of parity check
digits for codes detecting burst errors of length b or less with Euclidean weight
wE or less (1 ≤ wE ≤ b[q/2]2).

To prove the result, we first prove the following lemma:

Lemma 2.1. If V
(n)
t denotes the number of all n-tuples of Euclidean weight t

or less over Zq, then V
(n)
t is given by

V
(n)
t =

t∑
η=0

A(n)
η ,(1)

where

A(n)
η =





[q/2]∑

N=1

∑
r0,r1...,rN

n!
r0!r1! · · · rN !

er1
1 er2

2 · · · erN

N for η > 0

1 for η = 0,

(2)

and r′is are integers such that

r0 + r1 + r2 + · · ·+ rN = n, rN ≥ 1, ri ≥ 0 (i 6= N),
12r1 + 22r2 + · · ·+ N2rN = η.(3)

Proof. Clearly, A
(n)
η = 1 for η = 0 is obvious. So, assume η ≥ 1. We consider

partitions of the integer η (1 ≤ η ≤ t), the largest entry in which has an
equivalent Euclidean value N2 (1 ≤ N ≤ [q/2] ). If ri is the number of times,
entries with equivalent Euclidean value |i|2 occurs in the partition, then the
number of vectors of length n that can be formed by filling n positions from
the integers 0, 1, . . . , N is given by

n!
r0!r1! · · · rN !

er1
1 er2

2 · · · erN

N .(4)

Condition (3) follows immediately as the total number of entries is n and the
sum of Euclidean values of the entries is η. Now summing (4) for all possible
values of r′is and of N (1 ≤ N ≤ [q/2]), we get (2). Finally, V

(n)
t is obtained

by summing A
(n)
η for all possible values of η which range from 0 to t. Hence

the proof is completed. ¤
We now give a definition:

Definition 2.1. A linear combination of n-vectors u1, u2, . . . , un given by

α1u1 + α2u2 + · · ·+ αnun,

where αi ∈ Zq, ui ∈ Zn
q (1 ≤ i ≤ n) is called a linear combination of Euclidean

weight wE if
Euclidean weight(α1, α2, . . . , αn) = wE .
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Theorem 2.1. Given positive integers b and wE (1 ≤ wE ≤ b[q/2]2), a suf-
ficient condition that there exists an (n, k) linear code over Zq (q prime) that
has no burst of length b or less with Euclidean weight wE or less as a code word
is

qn−k > 1 +
[q/2]∑

l=1

elV
(b−1)
wE−l2 .(5)

Proof. The existence of such a code will be proved by constructing a suitable
(n−k)×n parity check matrix H for the desired code. We select any non zero
(n− k)-tuple as the first column of H. Subsequent columns are added to H in
such a way that after having selected j − 1 columns h1, h2, . . . , hj−1 suitably,
a nonzero (n− k)-tuple is chosen as the jth column hj such that

λhj 6= λi1hi1 + λi2hi2 + · · ·+ λiphip ,(6)

where

λ, λij ∈ Zq (j = 1 to p), |λi1 |2 + |λi2 |2 + · · ·+ |λip |2 + |λ|2 ≤ wE

and
{hi1 , hi2 , . . . , hip} ⊆ {hj−1, hj−2, . . . , hj−b+1},

i.e., hj is chosen in such a way that no linear combination of Euclidean weight
wE or less from the immediately preceding b−1 columns and column hj is zero
i.e., no linear combination of Euclidean weight wE or less from the columns
hj−b+1, hj−b+2, . . . , hj−1, hj is zero. Such a condition will ensure that a burst
of length b or less with Euclidean weight wE or less cannot be a code vector in
the code whose parity check matrix is H.

The number of possible linear combinations in equation (6) including the
pattern of all zeros is given by

1 + e1V
(b−1)
wE−12 + e2V

(b−1)
wE−22 + · · ·+ e[q/2]V

(b−1)
wE−[q/2]2 = 1 +

[q/2]∑

l=1

elV
(b−1)
wE−l2 .

Therefore, a column hj can be added to H provided that this number is less
than the total number of (n− k)-tuples which is qn−k.

At worst, all these linear combinations might yield a distant sum, therefore,
hj can always be added to H provided that

qn−k > 1 +
[q/2]∑

l=1

elV
(b−1)
wE−l2 .(7)

It is important to note that the relation in equation (7) is independent of j.
Therefore, we can go on adding the columns as long as we wish but for code
of length j, we shall stop after choosing j columns. So for j = n, we shall add
up to n columns.

This completes the proof of the theorem. ¤
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Example 2.1. Consider the following 3×4 parity check matrix of a (4,1) linear
Euclidean weight code over Z5:

H =




1 0 0 2
0 1 0 2
0 0 1 3




3×4

This matrix has been constructed by the synthesis procedure outlined in the
proof of Theorem 2.1 by taking b = 3 and wE = 4. The code whose parity
check matrix is H satisfies the sufficient condition of Theorem 2.1 as shown
below:

1 +
[q/2]∑

l=1

elV
(b−1)
wE−l2 = 1 +

2∑

l=1

elV
(2)
4−l2

= 1 + e1V
(2)
3 + e2V

(2)
0

= 1 + (2× 9) + (2× 1)

(since V
(2)
3 = 9 and V

(2)
0 = 1)

= 21.

Also, qn−k = 53 = 125.
Therefore,

qn−k = 125 > 21 = 1 +
[q/2]∑

l=1

elV
(b−1)
wE−l2 .

By Theorem 2.1 we get that the code detects all burst errors of length 3 or less
with Euclidean weight 4 or less. We verify this fact as follows:

The generator matrix G of the code corresponding to the above given parity
check matrix H is given by

G = [3 3 2 1]1×4.

The code words of this code are

v0 = 0000, Euclidean weight(v0) = 0
v1 = 3321, Euclidean weight(v1) = 13
v2 = 1142, Euclidean weight(v2) = 7
v3 = 4413, Euclidean weight(v3) = 7

v4 = 2234, Euclidean weight(v4) = 13.

Thus, all the code words of the code whose parity check matrix is H are not
bursts of length 3 or less with Euclidean weight 4 or less over Z5, i.e., code
detects all bursts of length 3 or less with Euclidean weight 4 or less over Z5.
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3. An upper bound for Euclidean weight codes correcting
burst errors

In this section, we obtain an upper bound on the number of parity check
digits for codes correcting burst errors of length b or less with Euclidean weight
wE or less (1 ≤ wE ≤ b[q/2]2).

Theorem 3.1. A sufficient condition for the existence of an (n, k) linear Eu-
clidean weight code over Zq (q prime) which corrects all bursts of length b or
less (n > 2b) with Euclidean weight wE or less (1 ≤ wE ≤ b[q/2]2) is given by

qn−k > 1 +
[[q/2]∑

λ=1

eλV
(b−1)
wE−λ2

][ b∑

i=1

(n− b− i + 1)(V (i)
wE

− 1)
]

(8)

+
[q/2]∑

λ=1

eλ

(
V

(b−1)
2wE−λ2 − V

(b−1)
1−λ2

)

+
[q/2]∑

λ=1

eλ

((b−1)∑

k=1

min{[q/2],[
√

wE−1]}∑

λ1=1

∑
r1λ1 ,r2λ1 ,r3λ1

eλ1A
(b−k−1)
r1λ1

A(k)
r2λ1

A(b−k−1)
r3λ1

)
,

where

2− λ2 ≤ λ2
1 + r1λ1 + r2λ1 + r3λ1 ≤ 2wE − λ2,

1 ≤ λ2
1 + r1λ1 ≤ wE − 1,

1 ≤ r2λ1 ≤ 2wE − 1− λ2,

0 ≤ r3λ1 ≤ wE − λ2,(9)

r2λ1 + r3λ1 ≥ 1− λ2,

λ2
1 + r1λ1 + r2λ1 ≥ 1.

Proof. The existence of such a code will be proved by constructing a suit-
able (n − k) × n parity check matrix H for the desired code. We select any
nonzero (n−k)-tuple as the first column of parity check matrix H. Subsequent
columns are added to H in such a way that after having selected j−1 columns
h1, h2, . . . , hj−1 suitably, a nonzero (n − k)-tuple is chosen as the jth column
hj such that αhj (1 ≤ α ≤ q− 1) is not a linear combination of any number of
columns of Euclidean weight wE − |α|2 or less from the immediately preceding
b − 1 columns hj−b+1, hj−b+2, . . . , hj−1 together with any number of columns
with Euclidean weight wE or less among any b consecutive columns out of all
the j − 1 columns selected so far. In other words, column hj can be added to
H provided that

(10) αhj 6= (αi1hi1 +αi2hi2 + · · ·+αirhir )+ (βj1hj1 +βj2hj2 + · · ·+βjmhjm),

where 1 ≤ α ≤ q − 1 (or, equivalently 1 ≤ |α|2 ≤ [q/2]2), αi1hi1 + αi2hi2 +
· · ·+αirhir is any linear combination of Euclidean weight less than or equal to
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wE − |α|2 of the columns from hj−b+1, hj−b+2, . . . , hj−1 and βj1hj1 + βj2hj2 +
· · · + βjm

hjm
is any linear combination of Euclidean weight wE or less from a

set of b consecutive columns among all j − 1 columns.
To compute the number of all possible linear combinations occurring in (10)

for all possible choices of αij ’s and βjk
’s, we analyze the situation in three

different cases.

Case 1. When βjk
’s in Equation (10) are taken from the first j− b columns.

It is clear that

1 ≤
m∑

k=1

|βjk
|2 ≤ wE(11)

and

0 ≤
r∑

j=1

|αij |2 ≤ wE − |α|2,(12)

where 1 ≤ |α|2 ≤ [q/2]2.
The number of βjk

’s satisfying equation (11) is

(13)
b∑

i=1

(j − b− i + 1)(V (i)
wE

− V
(i)
0 ) =

b∑

i=1

(j − b− i + 1)(V (i)
wE

− 1).

The number of αij ’s satisfying inequality (12) is
[q/2]∑

λ=1

eλV
(b−1)
wE−λ2 .(14)

Case 2. When βjk
’s are taken from the immediately preceding b−1 columns.

In this case, the number of linear combinations occurring in equation (10)
or, in other words, number of additional ways in which αij ’s and βjk

’s can be
selected is given by

[q/2]∑

λ=1

eλ

(
V

(b−1)
2wE−λ2 − V

(b−1)
1−λ2

)
.(15)

Case 3. When βjk
’s are neither completely confined to the first j−b columns

nor to the last b− 1 columns.
In this case, hjk

’s are selected from hj−2b+2, hj−2b+3, . . . , hj−1 in such a way
that not all are taken either from hj−2b+2, hj−2b+3, . . . , hj−b or from hj−b+1,
hj−b+2, . . . , hj−1. Let us suppose that the burst starts from the (j−2b+k+1)th

position which may continue upto (j − b + k)th position (1 ≤ k ≤ b − 1). Let
the Euclidean value of the element occurring at the starting position (j −
2b + k + 1) of the burst be λ2

1. Further, let us have linear combinations, of
Euclidean weight r1λ1 , of columns from the (j − 2b + k + 1)th, . . . , (j − b)th

columns; linear combinations of Euclidean weight r2λ1 , of columns from the
(j − b + 1)th, . . . , (j − b + k)th columns; and linear combinations of Euclidean
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weight r3λ1 , of columns from the (j− b+k +1)th, . . . , (j−1)th columns. Then,
in this case, the total number of choices of the linear combinations of equation
(10) turns out to be

(16)
[q/2]∑

λ=1

eλ

((b−1)∑

k=1

min{[q/2],[
√

wE−1 ]}∑

λ1=1

∑
r1λ1 ,r2λ1 ,r3λ1

eλ1A
(b−k−1)
r1λ1

A(k)
r2λ1

A(b−k−1)
r3λ1

)
,

where

2− λ2 ≤ λ2
1 + r1λ1 + r2λ1 + r3λ1 ≤ 2wE − λ2,

1 ≤ λ2
1 + r1λ1 ≤ wE − 1,

1 ≤ r2λ1 ≤ 2wE − 1− λ2,(17)

0 ≤ r3λ1 ≤ wE − λ2,

r2λ1 + r3λ1 ≥ 1− λ2,

λ2
1 + r1λ1 + r2λ1 ≥ 1.

Thus total number of possible distinct linear combinations arising out of all the
three cases including the patterns of all zeros is given by

1+
[[q/2]∑

λ=1

eλV
(b−1)
wE−λ2

][ b∑

i=1

(j − b− i + 1)(V (i)
wE

− 1)
]
+

[q/2]∑

λ=1

eλ

(
V

(b−1)
2wE−λ2 − V

(b−1)
1−λ2

)

+
[q/2]∑

λ=1

eλ

((b−1)∑

k=1

min{[q/2],[
√

wE−1]}∑

λ1=1

∑
r1λ1 ,r2λ1 ,r3λ1

eλ1A
(b−k−1)
r1λ1

A(k)
r2λ1

A(b−k−1)
r3λ1

)
=: L,

where r1λ1 , r2λ1 , r3λ1 satisfy the constraints given in inequalities (17).
Therefore, a column hj can be added to the parity check matrix H provided

that

qn−k > L.(18)

But for an (n, k) linear code to exist, the inequality (18) should hold for j = n
and we get (8).

This completes the proof of the theorem. ¤
Example 3.1. Take b = 2, wE = 2, q = 5, n = 5, k = 1. We show the
existence of a (5,1) linear code over Z5 satisfying the sufficient condition (8)
and correcting all burst errors of length 2 or less with Euclidean weight 2 or
less.

We now compute the value of R.H.S. of inequality (8) for above mentioned
values of parameters, i.e., for b = 2, wE = 2, q = 5, n = 5, k = 1.

(R.H.S.) of (8) = 1 +
2∑

λ=1

eλ

[
V

(1)
2−λ2

(
3(V (1)

2 − 1) + 2(V (2)
2 − 1)

)
(19)

+
(

V
(1)
4−λ2 − V

(1)
1−λ2

)
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+
1∑

k=1

1∑

λ1=1

∑
r1λ1 ,r2λ1 ,r3λ1

eλ1A
(1−k)
r1λ1

A(k)
r2λ1

A(1−k)
r3λ1

]

= 1 +
2∑

λ=1

eλMλ,

where

Mλ = V
(1)
2−λ2

(
3(V (1)

2 − 1) + 2(V (2)
2 − 1)

)
+

(
V

(1)
4−λ2 − V

(1)
1−λ2

)

+
1∑

k=1

1∑

λ1=1

∑
r1λ1 ,r2λ1 ,r3λ1

eλ1A
(1−k)
r1λ1

A(k)
r2λ1

A(1−k)
r3λ1

,

and

2− λ2 ≤ λ2
1 + r1λ1 + r2λ1 + r3λ1 ≤ 4− λ2,

1 ≤ λ2
1 + r1λ1 ≤ 1,

1 ≤ r2λ1 ≤ 3− λ2,

0 ≤ r3λ1 ≤ 2− λ2,

r2λ1 + r3λ1 ≥ 1− λ2,

λ2
1 + r1λ1 + r2λ1 ≥ 1.

Since λ varies from 1 to 2 in equation (19), therefore, we compute Mλ

corresponding to each value of λ in the following two cases:
Case 1. When λ = 1.
In this case, r1λ1 , r2λ1 , r3λ1 have following three sets of feasible solutions:

(i) r1λ1 = 0, r2λ1 = 1, r3λ1 = 1
(ii) r1λ1 = 0, r2λ1 = 1, r3λ1 = 0
(iii) r1λ1 = 0, r2λ1 = 2, r3λ1 = 0.

Therefore, the value of Mλ in (19) for λ = 1 is given by

Mλ

∣∣∣∣
λ=1

= V
(1)
1

(
3(V (1)

2 − 1) + 2(V (2)
2 − 1)

)
+

(
V

(1)
3 − V

(1)
0

)
(20)

+2
(

A
(0)
0 A

(1)
1 A

(0)
1 + A

(0)
0 A

(1)
1 A

(0)
0 + A

(0)
0 A

(1)
2 A

(0)
0

)

= 3(3× 2 + 2× 8) + (3− 1) + 2(0 + 0 + 0)
= 68.

Case 2. When λ = 2.
For this case, there is no feasible solution for r1λ1 , r2λ1 , r3λ1 . Therefore, the

value of Mλ in (19) for λ = 2 is taken to be zero, i.e.,

Mλ

∣∣∣∣
λ=2

= 0.(21)
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Substituting the values of Mλ for λ = 1, 2 from (20) and (21) respectively in
equation (19), we get

(19) = 1 + e1 × 68 + e2 × 0
= 1 + 2× 68 + 2× 0
= 137.

Also, L.H.S. of (8) for a (5,1) linear code over Z5 = 5n−k = 54 = 625.
Since 625 > 137, therefore, the sufficient condition (8) is satisfied for a (5,1)

linear code over Z5 for b = 2, wE = 2.
Now, consider the following 4 × 5 parity check matrix of a (5,1) linear code

over Z5:

H =




1 0 0 0 3
0 1 0 0 0
0 0 1 0 2
0 0 0 1 1




4×5

This matrix has been constructed by the synthesis procedure outlined in the
proof of Theorem 3.1 by taking b = 2 and wE = 2. The null space of this
matrix is the desired code which corrects all burst errors of length 2 or less
with Euclidean weight 2 or less. It can be seen from the following table that
syndromes of all the correctable error patterns, i.e., all burst errors of length 2
or less with Euclidean weight 2 or less are distinct.

Table.
Error Pattern Syndrome

(1 0 0 0 0) (1 0 0 0)
(4 0 0 0 0) (4 0 0 0)
(0 1 0 0 0) (0 1 0 0)
(0 4 0 0 0) (0 4 0 0)
(0 0 1 0 0) (0 0 1 0)
(0 0 4 0 0) (0 0 4 0)
(0 0 0 1 0) (0 0 0 1)
(0 0 0 4 0) (0 0 0 4)
(0 0 0 0 1) (3 0 2 1)
(0 0 0 0 4) (2 0 3 4)
(1 1 0 0 0) (1 1 0 0)
(1 4 0 0 0) (1 4 0 0)
(4 1 0 0 0) (4 1 0 0)
(4 4 0 0 0) (4 4 0 0)
(0 1 1 0 0) (0 1 1 0)
(0 1 4 0 0) (0 1 4 0)
(0 4 1 0 0) (0 4 1 0)
(0 4 4 0 0) (0 4 4 0)
(0 0 1 1 0) (0 0 1 1)
(0 0 1 4 0) (0 0 1 4)
(0 0 4 1 0) (0 0 4 1)
(0 0 4 4 0) (0 0 4 4)
(0 0 0 1 1) (3 0 2 2)
(0 0 0 1 4) (2 0 3 0)
(0 0 0 4 1) (3 0 2 0)
(0 0 0 4 4) (2 0 3 3)
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