• Title/Summary/Keyword: minimum mean square error controller

Search Result 3, Processing Time 0.018 seconds

Useful Control Equations for Practitioners on Dynamic Process Control

  • Suzuki, Tomomichi;Ojima, Yoshikazu
    • International Journal of Quality Innovation
    • /
    • v.3 no.2
    • /
    • pp.174-182
    • /
    • 2002
  • System identification and controller formulation are essential in dynamic process control. In system identification, data for system identification are obtained, and then they are analyzed so that the system model of the process is built, identified, and diagnosed. In controller formulation, the control equation is derived based on the result of the system identification. There has been much theoretical research on system identification and controller formulation. These theories are very useful when they are appropriately applied. To our regret, however, these theories are not always effectively applied in practice because the engineers and the operators who manage the process often do not have the necessary understanding of required time series analysis methods. On the other hand, because of widespread use of statistical packages, system identification such as estimating ARMA models can be done with little understanding of time series analysis methods. Therefore, it might be said that the most theoretically difficult part in practice is the controller formulation. In this paper, lists of control equations are proposed as a useful tool for practitioners to use. The tool supports bridging the gap between theory and practice in dynamic process control. Also, for some models, the generalized control equations are obtained.

Tip Position Command Tracking of a Flexible Beam Using Active Vibration Control (능동진동제어를 이용한 유연보의 끝단위치 명령추종연구)

  • Lee, Young-Sup;Elliott, Stephen-J
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.643-648
    • /
    • 2003
  • The problem considered in this paper is that the tip position of a flexible cantilever beam is controlled to follow a command signal, using a pair of piezoelectric actuators at the clamped end. The beam is lightly damped and so the natural transient response is rather long, and also since the sensor and actuator are not collocated, the plant response is non-minimum phase. Two control strategies were investigated. The first involved conventional PID control in which the feedback gains were adjusted to give the fastest closed-loop response to a step input. The second control strategy was based on an internal model control (IMC) architecture. The control filter in the IMC controller was a digital FIR device designed to minimize the expectation of the mean square tracking error. The IMC controller designed fur the beam was found to have very much reduced settling times to a step input compared with those of the PID controller.

  • PDF

Comparison of monitoring the output variable and the input variable in the integrated process control (통합공정관리에서 출력변수와 입력변수를 탐지하는 절차의 비교)

  • Lee, Jae-Heon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.4
    • /
    • pp.679-690
    • /
    • 2011
  • Two widely used approaches for improving the quality of the output of a process are statistical process control (SPC) and automatic process control (APC). In recent hybrid processes that combine aspects of the process and parts industries, process variations due to both the inherent wandering and special causes occur commonly, and thus simultaneous application of APC and SPC schemes is needed to effectively keep such processes close to target. The simultaneous implementation of APC and SPC schemes is called integrated process control (IPC). In the IPC procedure, the output variables are monitored during the process where adjustments are repeatedly done by its controller. For monitoring the APC-controlled process, control charts can be generally applied to the output variable. However, as an alternative, some authors suggested that monitoring the input variable may improve the chance of detection. In this paper, we evaluate the performance of several monitoring statistics, such as the output variable, the input variable, and the difference variable, for efficiently monitoring the APC-controlled process when we assume IMA(1,1) noise model with a minimum mean squared error adjustment policy.