• 제목/요약/키워드: minimum mean square error

검색결과 290건 처리시간 0.026초

A Pseudo-Random Beamforming Technique for Time-Synchronized Mobile Base Stations with GPS Signal

  • Son, Woong;Jung, Bang Chul
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제7권2호
    • /
    • pp.53-59
    • /
    • 2018
  • This paper proposes a pseudo-random beamforming technique for time-synchronized mobile base stations (BSs) for multi-cell downlink networks which have mobility. The base stations equipped with multi-antennas and mobile stations (MSs) are time-synchronized based on global positioning system (GPS) signals and generate a number of transmit beamforming matrix candidates according to the predetermined pseudo-random pattern. In addition, MSs generate receive beamforming vectors that correspond to the beam index number based on the minimum mean square error (MMSE) using transmit beamforming vectors that make up a number of transmit beamforming matrices and wireless channel matrices from BSs estimated via the reference signals (RS). Afterward, values of received signal-to-interference-plus-noise ratio (SINR) with regard to all transmit beamforming vectors are calculated, and the resulting values are then feedbacked to the BS of the same cells along with the beam index number. Each of the BSs calculates each of the sum-rates of the transmit beamforming matrix candidates based on the feedback information and then transmits the calculated results to the BS coordinator. After this, optimum transmit beamforming matrices, which can maximize a sum-rate of the entire cells, are selected at the BS coordinator and informed to the BSs. Finally, data signals are transmitted using them. The simulation results verified that a sum-rate of the entire cells was improved as the number of transmit beamforming matrix candidates increased. It was also found that if the received SINR values and beam index numbers are feedbacked opportunistically from each of the MSs to the BSs, not only nearly the same performance in sum-rate with that of applying existing feedback techniques could be achieved but also an amount of feedback was significantly reduced.

Estimation of Highland Kimchi Cabbage Growth using UAV NDVI and Agro-meteorological Factors

  • Na, Sang-Il;Hong, Suk-Young;Park, Chan-Won;Kim, Ki-Deog;Lee, Kyung-Do
    • 한국토양비료학회지
    • /
    • 제49권5호
    • /
    • pp.420-428
    • /
    • 2016
  • For more than 50 years, satellite images have been used to monitor crop growth. Currently, unmanned aerial vehicle (UAV) imagery is being assessed for analyzing within field spatial variability for agricultural precision management, because UAV imagery may be acquired quickly during critical periods of rapid crop growth. This study refers to the derivation of growth estimating equation for highland Kimchi cabbage using UAV derived normalized difference vegetation index (NDVI) and agro-meteorological factors. Anbandeok area in Gangneung, Gangwon-do, Korea is one of main districts producing highland Kimchi cabbage. UAV imagery was taken in the Anbandeok ten times from early June to early September. Meanwhile, three plant growth parameters, plant height (P.H.), leaf length (L.L.) and outer leaf number (L.N.), were measured for about 40 plants (ten plants per plot) for each ground survey. Six agro-meteorological factors include average temperature; maximum temperature; minimum temperature; accumulated temperature; rainfall and irradiation during growth period. The multiple linear regression models were suggested by using stepwise regression in the extraction of independent variables. As a result, $NDVI_{UAV}$ and rainfall in the model explain 93% of the P.H. and L.L. with a root mean square error (RMSE) of 2.22, 1.90 cm. And $NDVI_{UAV}$ and accumulated temperature in the model explain 86% of the L.N. with a RMSE of 4.29. These lead to the result that the characteristics of variations in highland Kimchi cabbage growth according to $NDVI_{UAV}$ and other agro-meteorological factors were well reflected in the model.

MIMO채널에서 Sphere Decoding 알고리즘을 이용한 신호검파 (Signal Detection with Sphere Decoding Algorithm at MIMO Channel)

  • 안진영;강윤정;김상준
    • 한국정보통신학회논문지
    • /
    • 제13권10호
    • /
    • pp.2197-2204
    • /
    • 2009
  • 본 논문에서는 다중입력 다중출력 (Multiple Input Multiple Output: MIMO) 시스템에서 Maximum Likelihood (ML) 수신기와 같은 성능을 가지지만 복잡도가 낮은 Sphere Decoding (SD) 알고리즘에 대해 분석하고 그 성능을 평가한다. 각각의 송신 안테나에서 채널로 전송되는 독립적인 신호는 QPSK 와 16QAM 방식을 사용하여 변조되며, 채널은 산란이 활발하게 일어나는 레일리 (Rayleigh) 평탄 페이딩 채널로 가정한다. 수신기에서 수신된 신호는 Fincke & Pohst SD 알고리즘에 의해 각 송신 안테나로부터의 독립적인 신호로 검파되며, 그 성능이 ZF (Zero Forcing), MMSE (Minimum Mean Square Error), SIC (Successive Interference Cancelation), 그리고 ML 수신기의 성능과 비교되었다. 추가적으로 복잡도를 줄이기 위해 개선된 형태인 Viterbo & Boutros SD 알고리즘을 이용하여 검파된 신호의 BER 성능과 부동 소수점 연산량(Floating Point Operations: FLOPS)이 각각 비교 분석되었다.

OFDM 시스템을 위한 고속의 채널환경에서의 효율적인 채널추정기법 (An Efficient Channel Estimation Method in Rapid Fading Channel for OFDM Systems)

  • 강연석;황태욱;김영수;서덕영;김진상
    • 한국항행학회논문지
    • /
    • 제8권2호
    • /
    • pp.136-144
    • /
    • 2004
  • 본 논문에서는 Orthogonal frequency division multiplexing(OFDM) 시스템의 성능 향상을 위해 파일럿 심볼을 이용한 향상된 채널추정 알고리즘을 제안한다. 기존의 LMMSE 알고리즘을 이용한 채널추정 방법은 파일럿 심볼만을 채널추정에 이용함으로써 고속의 채널환경하에서 성능이 현저하게 떨어지는 단점이 있다. 이런 문제를 해결하기 위해 파일럿 사이의 채널을 선 추정하고 이 추정된 값을 다시 파일럿과 함께 이용하여 채널을 추정하는 채널추정기법을 제안하였다. 제안된 채널추정 알고리즘은 고속의 채널환경하에서 향상된 성능의 결과를 얻을 수 있었다.

  • PDF

Aerosol Optical Thickness Retrieval Using a Small Satellite

  • Wong, Man Sing;Lee, Kwon-Ho;Nichol, Janet;Kim, Young J.
    • 대한원격탐사학회지
    • /
    • 제26권6호
    • /
    • pp.605-615
    • /
    • 2010
  • This study demonstrates the feasibility of small satellite, namely PROBA platform with the compact high resolution imaging spectrometer (CHRIS), for aerosol retrieval in Hong Kong. The rationale of our technique is to estimate the aerosol reflectances by decomposing the Top of Atmosphere (TOA) reflectances from surface reflectance and Rayleigh path reflectances. For the determination of surface reflectances, the modified Minimum Reflectance Technique (MRT) is used on three winter ortho-rectified CHRIS images: Dec-18-2005, Feb-07-2006, Nov-09-2006. For validation purpose, MRT image was compared with ground based multispectral radiometer measurements and atmospherically corrected Landsat image. Results show good agreements between CHRIS-derived surface reflectance and both by ground measurement data as well as by Landsat image (r>0.84). The Root-Mean-Square Errors (RMSE) at 485, 551 and 660nm are 0.99%, 1.19%, and 1.53%, respectively. For aerosol retrieval, Look Up Tables (LUT) which are aerosol reflectances as a function of various AOT values were calculated by SBDART code with AERONET inversion products. The CHRIS derived Aerosol Optical Thickness (AOT) images were then validated with AERONET sunphotometer measurements and the differences are 0.05~0.11 (error=10~18%) at 440nm wavelength. The errors are relatively small compared to those from the operational moderate resolution imaging spectroradiometer (MODIS) Deep Blue algorithm (within 30%) and MODIS ocean algorithm (within 20%).

Overall damage identification of flag-shaped hysteresis systems under seismic excitation

  • Zhou, Cong;Chase, J. Geoffrey;Rodgers, Geoffrey W.;Xu, Chao;Tomlinson, Hamish
    • Smart Structures and Systems
    • /
    • 제16권1호
    • /
    • pp.163-181
    • /
    • 2015
  • This research investigates the structural health monitoring of nonlinear structures after a major seismic event. It considers the identification of flag-shaped or pinched hysteresis behavior in response to structures as a more general case of a normal hysteresis curve without pinching. The method is based on the overall least squares methods and the log likelihood ratio test. In particular, the structural response is divided into different loading and unloading sub-half cycles. The overall least squares analysis is first implemented to obtain the minimum residual mean square estimates of structural parameters for each sub-half cycle with the number of segments assumed. The log likelihood ratio test is used to assess the likelihood of these nonlinear segments being true representations in the presence of noise and model error. The resulting regression coefficients for identified segmented regression models are finally used to obtain stiffness, yielding deformation and energy dissipation parameters. The performance of the method is illustrated using a single degree of freedom system and a suite of 20 earthquake records. RMS noise of 5%, 10%, 15% and 20% is added to the response data to assess the robustness of the identification routine. The proposed method is computationally efficient and accurate in identifying the damage parameters within 10% average of the known values even with 20% added noise. The method requires no user input and could thus be automated and performed in real-time for each sub-half cycle, with results available effectively immediately after an event as well as during an event, if required.

염산 운송차량의 누출공 크기와 누출률 및 영향범위간 상관관계 연구 (A Study on the Correlation between Leak Hole Size, Leak Rate, and the Influence Range for Hydrochloric Acid Transport Vehicles)

  • 전병한;김현섭
    • 한국환경보건학회지
    • /
    • 제47권2호
    • /
    • pp.175-181
    • /
    • 2021
  • Objectives: The correlation between the size of a leak hole, the volume of the leakage, and the range of influence was investigated for a hydrochloric acid tank-lorry. Methods: For the case of a tank-lorry chemical accident, KORA (Korea Off-site Risk Assessment Supporting Tool) was used to predict the leak rate and the range of influence according to the size of the leak hole. The correlation was studied using R. Results: As a result of analyzing the leak rate change according to the leak hole size in a 35% hydrochloric acid tank-lorry, as the size of the leak hole increased from 1 to 100 mm, the leak rate increased from 0.008 to 83.94 kg/sec, following the power function. As a result of calculating the range of influence under conditions ranging from 1 to 100 mm in size and 10 to 60 minutes of leakage time, it was found that the range spanned from a minimum of 5.4 m to a maximum of 307.9 m. As a result of multiple regression analysis using R, the quadratic function model best explained the correlation between the size of the leak hole, the leak time, and the range of influence with an adjected coefficient of determination of 0.97 and a root mean square error of 22.33. Conclusion: If a correlation database for the size of a leak hole is accumulated for various substances and under various conditions, the amount of leakage and the range of influence can easily be calculated, facilitating field response activities.

Evaluation of Validity and Reliability of Inertial Measurement Unit-Based Gait Analysis Systems

  • Cho, Young-Shin;Jang, Seong-Ho;Cho, Jae-Sung;Kim, Mi-Jung;Lee, Hyeok Dong;Lee, Sung Young;Moon, Sang-Bok
    • Annals of Rehabilitation Medicine
    • /
    • 제42권6호
    • /
    • pp.872-883
    • /
    • 2018
  • Objective To replace camera-based three-dimensional motion analyzers which are widely used to analyze body movements and gait but are also costly and require a large dedicated space, this study evaluates the validity and reliability of inertial measurement unit (IMU)-based systems by analyzing their spatio-temporal and kinematic measurement parameters. Methods The investigation was conducted in three separate hospitals with three healthy participants. IMUs were attached to the abdomen as well as the thigh, shank, and foot of both legs of each participant. Each participant then completed a 10-m gait course 10 times. During each gait cycle, the hips, knees, and ankle joints were observed from the sagittal, frontal, and transverse planes. The experiments were conducted with both a camera-based system and an IMU-based system. The measured gait analysis data were evaluated for validity and reliability using root mean square error (RMSE) and intraclass correlation coefficient (ICC) analyses. Results The differences between the RMSE values of the two systems determined through kinematic parameters ranged from a minimum of 1.83 to a maximum of 3.98 with a tolerance close to 1%. The results of this study also confirmed the reliability of the IMU-based system, and all of the variables showed a statistically high ICC. Conclusion These results confirmed that IMU-based systems can reliably replace camera-based systems for clinical body motion and gait analyses.

A Novel RGB Image Steganography Using Simulated Annealing and LCG via LSB

  • Bawaneh, Mohammed J.;Al-Shalabi, Emad Fawzi;Al-Hazaimeh, Obaida M.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권1호
    • /
    • pp.143-151
    • /
    • 2021
  • The enormous prevalence of transferring official confidential digital documents via the Internet shows the urgent need to deliver confidential messages to the recipient without letting any unauthorized person to know contents of the secret messages or detect there existence . Several Steganography techniques such as the least significant Bit (LSB), Secure Cover Selection (SCS), Discrete Cosine Transform (DCT) and Palette Based (PB) were applied to prevent any intruder from analyzing and getting the secret transferred message. The utilized steganography methods should defiance the challenges of Steganalysis techniques in term of analysis and detection. This paper presents a novel and robust framework for color image steganography that combines Linear Congruential Generator (LCG), simulated annealing (SA), Cesar cryptography and LSB substitution method in one system in order to reduce the objection of Steganalysis and deliver data securely to their destination. SA with the support of LCG finds out the optimal minimum sniffing path inside a cover color image (RGB) then the confidential message will be encrypt and embedded within the RGB image path as a host medium by using Cesar and LSB procedures. Embedding and extraction processes of secret message require a common knowledge between sender and receiver; that knowledge are represented by SA initialization parameters, LCG seed, Cesar key agreement and secret message length. Steganalysis intruder will not understand or detect the secret message inside the host image without the correct knowledge about the manipulation process. The constructed system satisfies the main requirements of image steganography in term of robustness against confidential message extraction, high quality visual appearance, little mean square error (MSE) and high peak signal noise ratio (PSNR).

불확정 표적 모델에 대한 순환 신경망 기반 칼만 필터 설계 (Application of Recurrent Neural-Network based Kalman Filter for Uncertain Target Models)

  • 김동범;정대교;임재혁;민사원;문준
    • 한국군사과학기술학회지
    • /
    • 제26권1호
    • /
    • pp.10-21
    • /
    • 2023
  • For various target tracking applications, it is well known that the Kalman filter is the optimal estimator(in the minimum mean-square sense) to predict and estimate the state(position and/or velocity) of linear dynamical systems driven by Gaussian stochastic noise. In the case of nonlinear systems, Extended Kalman filter(EKF) and/or Unscented Kalman filter(UKF) are widely used, which can be viewed as approximations of the(linear) Kalman filter in the sense of the conditional expectation. However, to implement EKF and UKF, the exact dynamical model information and the statistical information of noise are still required. In this paper, we propose the recurrent neural-network based Kalman filter, where its Kalman gain is obtained via the proposed GRU-LSTM based neural-network framework that does not need the precise model information as well as the noise covariance information. By the proposed neural-network based Kalman filter, the state estimation performance is enhanced in terms of the tracking error, which is verified through various linear and nonlinear tracking problems with incomplete model and statistical covariance information.