• Title/Summary/Keyword: minimum law

Search Result 306, Processing Time 0.034 seconds

Performance Analysis of Electrical MMSE Linear Equalizers in Optically Amplified OOK Systems

  • Park, Jang-Woo;Chung, Won-Zoo
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.232-236
    • /
    • 2011
  • We analyze the linear equalizers used in optically amplified on-off-keyed (OOK) systems to combat chromatic dispersion (CD) and polarization mode dispersion (PMD), and we derive the mathematical minimum mean squared error (MMSE) performance of these equalizers. Currently, the MMSE linear equalizer for optical OOK systems is obtained by simulations using adaptive approaches such as least mean squared (LMS) or constant modulus algorithm (CMA), but no theoretical studies on the optimal solutions for these equalizers have been performed. We model the optical OOK systems as square-law nonlinear channels and compute the MMSE equalizer coefficients directly from the estimated optical channel, signal power, and optical noise variance. The accuracy of the calculated MMSE equalizer coefficients and MMSE performance has been verified by simulations using adaptive algorithms.

Model reference adaptive controller design for missiles with nonminimum-phase characteristics (비최소 위상 특성을 갖는 유도탄의 기준 모델 적응 제어기 설계)

  • 김승환;송찬호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.624-629
    • /
    • 1993
  • In this paper, a model reference adaptive control scheme is applied to the normal acceleration controller for missiles with nonminimum-phase characteristics. The proposed scheme has an auxiliary compensator, an identifier of plant parameters and a feedback control law. First, plant parameters are estimated by the identifier and based the parameter estimates the coefficients of the compensator are calculated so that the estimated plant model with the compensator becomes minimum-phase. In this calculation, Nehari Algorithm is used. Parameters of the control law are then updated so that the extended plant model follows the given reference model. It is shown that the performance of the designed controller is satisfied via computer simulations.

  • PDF

Design of Single-input Direct Adaptive Fuzzy Logic Controller Based on Stable Error Dynamics

  • Park, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.44-49
    • /
    • 2001
  • For minimum phase systems, the conventional fuzzy logic controllers (FLCs) use the error and the change-of-error as fuzzy input variables. Then the control rule table is a skew symmetric type, that is, it has UNLP (Upper Negative and Lower Positive) or UPLN property. This property allowed to design a single-input FLC (SFLC) that has many advantages. But its control parameters are not automatically adjusted to the situation of the controlled plant. That is, the adaptability is still deficient. We here design a single-input direct adaptive FLC (SDAFLC). In the AFLC, some parameters of the membership functions characterizing the linguistic terms of the fuzzy rules are adjusted by an adaptive law. The SDAFLC is designed by a stable error dynamics. We prove that its closed-loop system is globally stable in the sense that all signals involved are bounded and its tracking error converges to zero asymptotically. We perform computer simulations using a nonlinear plant and compare the control performance between the SFLC and the SDAFLC.

  • PDF

Optimal Guidance and Nonlinear Tracking Control for a Lunar Lander

  • Hwang, Myung-Shin;Kim, Jin-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.167.2-167
    • /
    • 2001
  • This paper presents guidance and control laws which guarantee a minimum fuel consumption and have obustness against various disturbances during a terminal-landing phase on the lunar surface. The nonlinear robust tracking control system is designed to track the reference profiles, which are expressed by exponential functions. An adjustment law in the tracking controller is given in the form of the differential equations with respect to the controller´s variable gains. Computer simulations are performed to examine the tracking accuracy, the robustness in a thrust failure mode, and the vertical soft landing at a pre-assigned point on the lunar surface. The results of numerical simulation show the effectiveness of the present control law.

  • PDF

Thermal stability analysis of temperature dependent inhomogeneous size-dependent nano-scale beams

  • Bensaid, Ismail;Bekhadda, Ahmed
    • Advances in materials Research
    • /
    • v.7 no.1
    • /
    • pp.1-16
    • /
    • 2018
  • Thermal bifurcation buckling behavior of fully clamped Euler-Bernoulli nanobeam built of a through thickness functionally graded material is explored for the first time in the present paper. The variation of material properties of the FG nanobeam are graded along the thickness by a power-law form. Temperature dependency of the material constituents is also taken into consideration. Eringen's nonlocal elasticity model is employed to define the small-scale effects and long-range connections between the particles. The stability equations of the thermally induced FG nanobeam are derived via the principal of the minimum total potential energy and solved analytically for clamped boundary conditions, which lead for more accurate results. Moreover, the obtained buckling loads of FG nanobeam are validated with those existing works. Parametric studies are performed to examine the influences of various parameters such as power-law exponent, small scale effects and beam thickness on the critical thermal buckling load of the temperature-dependent FG nanobeams.

Robust Stabilization of Nonminimum Phase Nonlinear Systems with Parametric Uncertainty (파라미터 불확실성을 갖는 비최소위상 비선형 시스템의 강인 안정화 제어)

  • Joo, Jin-Man;Choi, Yoon-Ho;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.418-421
    • /
    • 1997
  • A control synthesis scheme is presented for nonlinear single-input-single-output (SISO) systems with parametric uncertainty which have completely unstable zero dynamics. The approach involves the derivation of an input-output linearizing control law which achieves internal stability for a nonlinear minimum phase approximation to the original system using Fliess normal form. A vector of unknown constant parameters is also considered. A Lyapunov-based additional control law is shown to stabilize the full system.

  • PDF

A Second-Law Analysis of the Energy Consumption in Heating and Cooling Systems (냉난방에 소비되는 에너지절약에 관한 열역학 연구)

  • Bae, Sun-Hun
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.3 no.3
    • /
    • pp.180-184
    • /
    • 1974
  • From the point of view of the second law of thermodynamics, house heating and cooling systems were analysed for saving energy. The analysis provides a theoretical basis for the heat-pump application. Also the efficiency of energy use is defined more rigorously by comparing the thermodynamic availability actually consumed in heating and cooling with the minimum thermodynamic availability required to do the same heating and cooling. It was found that the present 'Ondol' heating system has a heating efficiency of around $8\%$ according to the definition described here. Several schemes to inprove the efficiency are presented.

  • PDF

Current Sliding Mode Control with a Load Sliding Mode Observer for Permanent Magnet Synchronous Machines

  • Jin, Ningzhi;Wang, Xudong;Wu, Xiaogang
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.105-114
    • /
    • 2014
  • The sliding mode control (SMC) strategy is applied to a permanent magnet synchronous machine vector control system in this study to improve system robustness amid parameter changes and disturbances. In view of the intrinsic chattering of SMC, a current sliding mode control method with a load sliding mode observer is proposed. In this method, a current sliding mode control law based on variable exponent reaching law is deduced to overcome the disadvantage of the regular exponent reaching law being incapable of approaching the origin. A load torque-sliding mode observer with an adaptive switching gain is introduced to observe load disturbance and increase the minimum switching gain with the increase in the range of load disturbance, which intensifies system chattering. The load disturbance observed value is then applied to the output side of the current sliding mode controller as feed-forward compensation. Simulation and experimental results show that the designed method enhances system robustness amid load disturbance and effectively alleviates system chattering.

A Global Trend on the Accreditation for Mediators - Focused on the U.S. and European Countries - (조정인 인증제에 관한 국제적 동향 - 미국 및 유럽 국가들을 중심으로 -)

  • YI, LORI
    • Journal of Arbitration Studies
    • /
    • v.27 no.2
    • /
    • pp.121-142
    • /
    • 2017
  • A study on the global trend of accreditation for mediators implies many important aspects of controlling of the quality of mediation. Firstly, whether or not having an accreditation system, most European countries and the U.S. have a common understanding on the fact that mediators need to be trained to mediate disputes, apart from their own expertise on the subject matters. Secondly, private-led accreditation has been utilized in countries having a Anglo-American law system such as the United Kingdom and the U.S. a while nation-managed one has been operated in the countries having a continental law system such as Austria, Belgium, Italy and Germany. Thirdly, private mediation service providers (usually institutions or companies) play an active role in the training and accreditation of mediators and further make them act as mediators in the disputes referred to them. Fourthly, the countries having a nation-managed accreditation system usually stipulate a certain mediation training and accreditation requirement by law. Fifthly, there is no uniform trend on the minimum hours of training required for accrediting the mediators. Sixthly, mediation training generally focuses on the practical mediation capacity-building, including mediation theory and role-playing, mediation simulations, peer review and supervision. And finally, the mediation theory mainly includes the role of mediator, mediation procedures, mediation communication, negotiation and communication skills, mediation ethics and mediator's code of conduct, etc.

Guidance Law for Agile Turn of Air-to-Air Missile During Boost Phase

  • Han, Seungyeop;Bai, Ji Hoon;Hong, Seong-Min;Roh, Heekun;Tahk, Min-Jea;Yun, Joongsup;Park, Sanghyuk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.709-718
    • /
    • 2017
  • This paper proposes the guidance laws for an agile turn of air-to-air missiles during the initial boost phase. Optimal solution for the agile turn is obtained based on the optimal control theory with a simplified missile dynamic model. Angle-of-attack command generating methods for completion of agile turn are then proposed from the optimal solution. Collision triangle condition for non-maneuvering target is reviewed and implemented for update of terminal condition for the agile turn. The performance of the proposed method is compared with an existing homing guidance law and the minimum-time optimal solution through simulations under various initial engagement scenarios. Simulation results verify that transition to homing phase after boost phase with the proposed method is more effective than direct usage of the homing guidance law.