• 제목/요약/키워드: minimum ignition energy

검색결과 81건 처리시간 0.017초

정전기 방전시의 소나무목분의 최소착화에너지 측정에 관한 연구 (A Study of Measurement of Minimum Ignition Energy for Pine Tree Dust on Electrostatic Discharges)

  • 이동훈;박한석
    • 한국안전학회지
    • /
    • 제13권3호
    • /
    • pp.74-79
    • /
    • 1998
  • To establish measuring method for minimum ignition energy of explosive powders caused by electrostatic discharge, A measuring method(Hartman) using a very small quantity of pine tree testing powder was proposed, and the influence of discharge current limiting resistance connected in series into a capacitive discharge circuit on ignition energies of explosive powders was investigated. As a result the minimum ignition energy was 42.25mJ when discharge current limiting resistance 300 $k\Omega$.

  • PDF

Numerical Calculation of Minimum Ignition Energy for Hydrogen and Methane Fuels

  • Kim, Hong-Jip;Chung, Suk-Ho;Sohn, Chae-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제18권5호
    • /
    • pp.838-846
    • /
    • 2004
  • Minimum ignition energies of hydrogen/air and methane/air mixtures have been investigated numerically by solving unsteady one-dimensional conservation equations with detailed chemical kinetic mechanisms. Initial kernel size needed for numerical calculation is a sensitive function of initial pressure of a mixture and should be estimated properly to obtain quantitative agreement with experimental results. A simple macroscopic model to determine minimum ignition energy has been proposed, where the initial kernel size is correlated with the quenching distance of a mixture and evaluated from the quenching distance determined from experiment. The simulation predicts minimum ignition energies of two sample mixtures successfully which are in a good agreement with the experimental data for the ranges of pressure and equivalence ratio.

MBS 공중합물의 자연발화 특성에 관한 연구 (A Study on Autoignition Characteristics of Methylmethacrylate-butadiene-styrene Copolymer)

  • 목연수;최재욱
    • 한국안전학회지
    • /
    • 제16권3호
    • /
    • pp.83-88
    • /
    • 2001
  • This study was preformed by measuring the minimum ignition temperature of MBS according to the change of sample vessel size and the minimum ignition temperature of MBS dust cloud The minimum ignition temperature of MBS product decreased as the vessel size was large, and it was obtained in the range from $120.5^{\circ}C$ to $94.5^{\circ}C$ and the apparent activation energy was obtained with 32.94Kcal/mol. The minimum ignition temperature of MBS dust cloud was measured by using Godbert-Greenwald furnace and it was obtained at $407^{\circ}C$ with the sample of 0.4g in the air and the ignition of dust cloud was not occurred below 13% oxygen concentration.

  • PDF

방전전극 재질과 최소점화에너지에 관한 실험 연구 (An Experimental Study on the Minimum Ignition Energy in Low Voltage Spark Discharge by Electrode Material)

  • 최상원
    • 한국안전학회지
    • /
    • 제27권3호
    • /
    • pp.63-70
    • /
    • 2012
  • In the hazardous areas where explosive gases, vapor or mists exist, electrical apparatus and installations must be the explosion-proof construction to prevent or limit the danger of the ignition of potentially explosive atmosphere. In Korea, nine types of protection have been specified in the government regulations at present: flameproof enclosure, pressurization, oil immersion, increased safety, intrinsic safety, non-incendive, powder filling, encapsulation, and special types. Among these types, the intrinsic safety has the construction which limit or by-pass igniting the electric energy using electronic devices. This type has lots of merits but at the same time requires a high-degree of technology. In this paper, we investigated several dominating factors which affect the minimum ignition energy; this energy plays a very important role in design and evaluation of the intrinsic safety type electrical apparatus. Electrode material, which is one of the most important factors, was intensively studied for the five sorts of material(Al, Cd, Mg, Sn, and Zn) with performing experiment in a low-voltage inductive circuit using IEC-type(International Electro-technical Commission) spark apparatus. The experimental results show that the minimum ignition energy of electrode material is varied: highest in Cd and lowest in Sn. We also confirmed the effect of electrode make-and-break speed.

Numerical Investigation on Initiation Process of Spherical Detonation by Direct Initiation with Various Ignition Energy

  • Nirasawa, Takayuki;Matsuo, Akiko
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.45-52
    • /
    • 2008
  • In order to investigate the initiation and propagation processes of a spherical detonation wave induced by direct initiation, numerical simulations were carried out using two-dimensional compressible Euler equations with an axisymmetric assumption and a one-step reaction model based on Arrhenius kinetics with various levels of ignition energy. By varying the amount of ignition energy, three typical initiation behaviors, which were subcritical, supercritical and critical regimes, were observed. Then, the ignition energy of more than $137.5{\times}10^6$ in non-dimensional value was required for initiating a spherical detonation wave, and the minimum ignition energy(i.e., critical energy) was less than that of the one-dimensional simulation reported by a previous numerical work. When the ignition energy was less than the critical energy, the blast wave generated from an ignition source continued to attenuate due to the separation of the blast wave and a reaction front. Therefore, detonation was not initiated in the subcrtical regime. When the ignition energy was more than the minimum initiation energy, the blast wave developed into a multiheaded detonation wave propagating spherically at CJ velocity, and then a cellular pattern radiated regularly out from the ignition center in the supercritical regime. The influence on ignition energy was observed in the cell width near the ignition center, but the cell width on the fully developed detonation remained constant during the expanding of detonation wave due to the consecutive formation of new triple points, regardless of ignition energy. When the ignition energy was equal to the critical energy, the decoupling of the blast wave and a reaction front appeared, as occurred in the subcrtical regime. After that, the detonation bubble induced by the local explosion behind the blast wave expanded and developed into the multiheaded detonation wave in the critical regime. Although few triple points were observed in the vicinity of the ignition core, the regularly located cellular pattern was generated after the onset of the multiheaded detonation. Then, the average cell width on the fully developed detonation was almost to that in the supercritical regime. These numerical results qualitatively agreed with previous experimental works regarding the initiation and propagation processes.

  • PDF

테레프탈산의 분진 폭발특성에 관한 연구 (A Study on Explosion Characteristics of Terephthalic Acid)

  • 목연수;장성록
    • 한국안전학회지
    • /
    • 제15권1호
    • /
    • pp.121-125
    • /
    • 2000
  • This study was executed by dust explosion experiment of terephthalic acid which was widely used for various purposes of food packing material and film etc. and the demand was rapidly increasing. The particle size and concentration of dust affected the minimum ignition energy largely and the lean concentration and the minimum ignition energy in the range of this study were obtained 50$g/m^3$ and 19mJ respectively. Minimum ignition energy was shown at the 4 and 5mm gap distance of discharge electrode, and when the gap distance was below 2mm the explosion could not generated although the sufficient energy was given. It was also found that the ignition energy decreased linearly with the decreasing of dust mean particle size.

  • PDF

3성분계 인화성 혼합가스의 최소점화에너지 측정에 관한 연구 (Measurement of Minimum Ignition Energy by Electrostatic Discharge for Flammable Ternary Gas Mixtures)

  • 최상원
    • 한국안전학회지
    • /
    • 제28권1호
    • /
    • pp.29-34
    • /
    • 2013
  • When flammable gases are mixed with air or oxygen in the explosion concentration range and are ignited by sufficiently large electrostatic discharge energy, they may explode causing severe disaster in workplace. The minimum ignition energy(MIE) of single gas-air mixtures has been already investigated by many research, but the MIE of mixtures of more than ternary gas mixture is not examined yet. The purpose of this study is to investigate the MIE of a ternary gas(methane, ethylene, hydrogen, propane) mixtures experimentally. The results of our experiment show that the ignition of a methane-ethylene-air, methane-hydrogen-air, methane-propane-air, ethylene-hydrogen-air, ethylene-propane-air and hydrogen-propane-air mixture due to electrostatic discharge energy primarily depends on that the mixture: the MIE decreases gradually with the increase of having the lower MIE than other mixture ratio in the normal atmospheric pressure.

최소발화에너지와 온도의 관계 (Relationship Between the Minimum Ignition Energy(MIE) and the Temperature)

  • 하동명
    • 한국화재소방학회논문지
    • /
    • 제11권2호
    • /
    • pp.3-10
    • /
    • 1997
  • 열량과 열발화이론의 개념을 근거로 최소발화에너지의 온도의폰성에 대한 이론적 고찰을 시도하였 다. 이 이론적 근거를 바탕으로 통계학적 및 수학적 방법을 기초로 하여 용도 변화에 의한 최소발화에 너지를 예측하는 식을 제시하였다. 본 연구에서 제시한 방법론에 의해 탄화수소인 프로판과 노말펜탄 에 적용한 결과 제시한 예측식과 문헌값이 거의 일치함을 알 수 있다.

  • PDF

방전에너지 제어에 의한 최소점화에너지의 고찰 (A Study on Minimum Ignition Energy by Controlled Discharge Energy)

  • 최상원;대택돈
    • 한국안전학회지
    • /
    • 제22권1호
    • /
    • pp.36-39
    • /
    • 2007
  • It is important to know Minimum Ignition Energy(MIE) of flammable materials for ignition hazard of chemical processes etc.. Currently a capacitor discharge is used mainly to measure the MIE. Then, it is impossible to control actively discharge energies and discharge time because the MIE measurement uses a high voltage capacitor and fixed capacitor. However, the control of discharge energy and discharge time will be convenient if self-sustain discharge is used. In this paper, we measured the MIE by self-sustain discharge of a pulse shape to propose the new measuring method of the MIE. AS a result, ignition energies are increased gradually as discharge duration time gets longer, and discharge current grows larger. Also, an arc discharge and a glow discharge occurred during the experimental period, and the ignition by glow discharges happened when discharge duration time was $90{\mu}s$, discharge current was 8A and 1A Especially, the MIE occurred the 0.05mm and 0.08mm of the gap distance between discharge electrode in the same discharge duration time.

전기다리미의 발화원인 판정에 관한 현상학적 고찰 (A Phenomenological Review on the Decision on the Cause of Ignition of Electric Iron)

  • 문용수;공하성;이종화
    • 대한안전경영과학회지
    • /
    • 제11권1호
    • /
    • pp.43-49
    • /
    • 2009
  • This study set three kinds of situation and observed the various states such as carbonization by experimenting damages by fire of electric iron. The results of this study are as follows: The fire did not occurred when the unpowered iron over mattress and cotton shirts was com busted completely by external flame because the temperature of surface of soleplate and mattress did not reach the minimum ignition energy and when the powered electric iron over mattress and cotton shirts was left for an hour with its temperature dial set to high because the temperature of combustibles did not reach the minimum ignition energy. The fire occurred when the electric iron in which the outer box, bi-metal switch, and temperature fuse were removed over mattress and cotton shirts was powered by through heater terminal, and then the electric iron, mattress, and cotton shirts were combusted by the fallen combustibles because the temperature of combustibles reached to the minimum ignition energy with the help of active transfer of heat.